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Abstract

It is proven that if xQ'(x) is increasing on (0,4+0c0) and w(x) =exp(—Q(x)) is the
corresponding weight on [0, 4 c0), then every continuous function that vanishes outside the
support of the extremal measure associated with w can be uniformly approximated by
weighted polynomials of the form w"P,. This problem was raised by Totik, who proved a
similar result (the Borwein—Saff conjecture) for convex Q. A general criterion is introduced,
too, which guarantees that the support of the extremal measure is an interval. With this
criterion we generalize the above approximation theorem as well as that one, where Q is
supposed to be convex.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In [6], Totik settled a basic conjecture in the theory of approximation by weighted
polynomials of the form w"P,, where w = exp(—Q) is a given weight function. This
conjecture was the Borwein—Saff conjecture and it was stated for convex Q.

In this paper, the same theorem is stated and proved, but for more general Q. The
criterion we use covers the case when (a) Q is convex, and also the case when (b) Q is
defined on [0, +00) and xQ'(x) is increasing. In logarithmic potential theory many
theorems use either (a) or (b) as their assumption on Q, since both of them guarantee
that the support S), is an interval. The criterion to be introduced is weaker than both
(a) and (b), but still guarantees that the support S,, is an interval. (Furthermore, we
merely assume that Q is absolutely continuous and not necessarily differentiable.)
Thus, this criterion itself is a useful result of this paper.

The reader can find the definition of the logarithmic capacity in [4, I.1]. We say that
a property holds quasi-everywhere, if the set where it does not hold has capacity 0.
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Let 2 <R be a closed set. (We assume that X is regular with respect to the Dirichlet
problem in C\\ 2.) A weight function w on X is said to be admissible, if it satisfies the
following three conditions:

(i) w is upper semi-continuous,
(i) {xeZ: w(x)>0} has positive capacity,
(iii) if 2 is unbounded, then |z|w(z) -0 as |z|] > o0, zeZ.

Unless otherwise noted, we will always assume in the theorems that w is
continuous.
We define Q by

w(x) =: exp(=0Q(x)),

so Q:X—>(—o0,0] is a lower semi-continuous function. This Q is called the
external field.

Let .#(X) be the collection of all positive unit Borel measures with compact
support in X. We define the logarithmic potential of ue .#(X) as

U'(x) = [ log - dutt),

x —1]

and the weighted energy integral as
1) = = [ [ 1og(lx = () di() ducr)

We will need the following basic theorem [4, Theorem 1.1.3]:

Theorem A. Let w be an admissible (not necessarily continuous) weight on the closed
set X and let V,, .= inf{l,(p): ue #(X)}. Then

(a) V,, is finite,
(b) there exists a unique element u,, € .4 (X) such that I,(1,,) = V,,
(c) setting F,, =V,, — [ Qdp,, the inequality

Ut (x)+ Q(x)=F,

holds quasi-everywhere on X
(d) the inequality

Ut (x) + Q(x)<F, (1)

holds for all xS, = supp(u,,).
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Remark. According to our definition, every measure in .#(X) has compact support,
so the support S,, is a compact set.

The measure y,, is called the equilibrium or extremal measure associated with w.

Notation 1. When we say that a property holds inside G—where G is a subset of
R—we mean that the property is satisfied on every compact subset of G.

We are considering uniform approximation of continuous functions on X by
weighted polynomials of the form w"P,, where deg P,<n. Theorem B is a Stone-
Weierstrass-type theorem for this kind of approximation (see [1] or [4, Theorem
VI.1.1]). Unless otherwise noted, we will always assume in the theorems that w is
continuous.

Theorem B. There exists a closed set Z = Z(w)< X, such that a continuous function f
on X is the uniform limit of weighted polynomials w"P,, n=1,2, ..., if and only if f
vanishes on Z.

Thus, the problem of what functions can be approximated is equivalent to
determining what points lie in Z(w). This latter problem is intimately related to the
density of u,,. The support S,, := supp(u,,) plays a special role (see [5], or [1] or see [4,
Theorem VI.1.2]):

Theorem C. Z> X\ (int S,,).

The Borwein—Saff conjecture was that Z = X\ (int S,,), if Q is convex, i.e., a
continuous function f can be approximated by weighted polynomials w"P,, if and
only if f vanishes outside S,,. This was proved by Totik [6], see Theorem G. The idea
of the proof was based on the following definition and theorems:

Definition D. We say that a non-negative function v has smooth integral on an
interval [a,b], if for every O0<e there is a 0<9, such that if I,J<][a,b] are two
adjacent intervals of equal length smaller than ¢, then

/IU<(1+8)/JU.

Clearly, all positive continuous functions have smooth integral, but also log(1/[¢|)
has smooth integral, on any interval [—a, a], where 0<a< 1. (We will prove it later.)
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Theorem E. Let us suppose that |a,b] is a subset of the support S,,, and the extremal
measure has a density v on [a,b] that has a positive lower bound and smooth integral
there. Then (a,b) " Z(w) = 0.

Theorem F. Let us suppose that (a,b) is a subset of the support S, and that Q is
convex on (a,b). Then p,, has a density v in (a, b) which has a positive lower bound and
smooth integral inside (a,b).

From these two theorems follows:

Theorem G. Let us suppose that (a,b) is a subset of the support S, and that Q is
convex on (a,b). Then (a,b)nZ(w) = 0. In particular, every function that vanishes
outside (a,b) can be uniformly approximated by weighted polynomials of the form w"P,,.

Notice that Theorem G (as well as its generalization, Theorem 5) is a local result; it
works for any part of the extremal support where Q is convex.

Totik raised the question whether Theorem G is still valid if 2 = [0,4c0) and if
we replace the convexity condition with the condition that xQ’(x) is increasing.
Theorem 5 answers this question positively.

2. Main results

Definition 2. We say that a function Q: D—R (D<R) is weak convex on an interval
I = [(a,b)]=D (a,beR) with basepoints 4, Be R, A< B, if the following properties
hold:

(i) I=[4, B],
(i) Q is absolutely continuous inside (a,b) (so Q' exists a.e. in I),
(ii1) if ael, then

lim - Q(x) < Q(a),

x—a+0

and if bel, then
lim ~O(x)<Q(b),

x—b—0

(iv) for some k€ [a,b]:
0(x)<0 on (a,x),

O(x)=0 on (k,b).

(v) (B—x)Q'(x) is increasing on (a, k),
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(vi) (x — A)Q'(x) is increasing on (x, b).
If B=+ 0, we replace (v) by

(v)* @'(x) is increasing on (a, k), and if 4 = — o0, we replace (vi) by

(vi)* Q'(x) is increasing on (i, b).

We will simply just say that Q is weak convex on an interval / (without mentioning
the basepoints), if Q is weak convex on the interval I = [(a,b)]=D (a,beR) with
basepoints a and b.

Remark. Since k = a (or k = b) is allowed, it is also possible that Q' is everywhere
positive (or negative) on /.

Notation 3. Throughout the article (in the above definition as well as in the
theorems) we agree on the following. Suppose that a function f(x)—which is usually
defined by using Q'(x)—is said to be increasing (or decreasing) on a set E, but it is
defined on a set F < E, where ENF has measure zero. Then by “f(x) is increasing on
E” we mean that there exists a set G F so that EN\.G has measure zero and f(x) is
increasing on G. In other words, we do not require that f(x) is increasing everywhere,
where it is defined. Similarly, if we write that, say, Q'(x)>0 on (k, B], we will mean
that there exists a set Gz (k, B] so that (x, B)\G has measure 0, Q'(x) exists on G
and Q'(x)>0 on G. This agreement weakens the assumptions on the considered
Sfunctions in the theorems, but the given proofs are correct for this modified increasing/
decreasing definitions as well.

Some immediate consequences of the above definition are:

Proposition 4. Let I <R be an interval.

(@) If Ic[Ay, Bi]<[A2, By =R and Q is weak convex on I with basepoints A and B,
then Q is also weak convex on I with basepoints A, and B.

(b) A function Q is convex on I if and only if Q is weak convex on I with basepoints
—o0 and + 0.

(c) Hence every convex function on I (<[Ay, By]) is also weak convex on I with
basepoints A\ and B. In particular, every convex function on I is also weak convex
on 1.

(d) If Q is absolutely continuous inside (0,+o0) and xQ'(x) is increasing on (0,+o0),
then Q is weak convex on (0,4 c0).

Thus “weak convexity” is a weaker condition than either the “Q is convex”, or the
“xQ'(x) is increasing” conditions.

So the following theorem, which is our main theorem, is a generalization of
Theorem G to a larger class of functions.
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Theorem 5. Let us suppose that (a,b) is a subset of the support S,, and that Q is weak
convex on (a,b) with basepoints A, B satisfying S, <[A, B]. Then (a,b)nZ(w) = 0.

In particular, every function that vanishes outside (a,b) can be uniformly
approximated by weighted polynomials of the form w"P,,.

Theorem 5 will follow from Theorem E, since we can generalize Theorem F as
follows:

Theorem 6. Let us suppose that (a,b) is a subset of the support S,,, and that Q is weak
convex on (a,b) with basepoints A, B satisfying S, <[A, B]. Then p,, has a density v in
(a, b) which has a positive lower bound and smooth integral inside (a,b).

Because of Proposition 4, in Theorem 5 we should choose 4 and B as close to
min S,, and max S,, (respectively) as possible to get the weakest assumption on Q.
Thus if the values of min S,, and max S,, are known, the best choices are 4 := min S|,
and B = max S,,. If, however, we have no information at all of the locations of
min S,, and max S,,, we must choose 4 :=—o0 and B:=+o0o0 to be sure that
S\w<[4, B] is satisfied, and in this case Theorem 5 reduces to Theorem G: the
assumption on Q is to be convex.

Notice, however, that S,, < X is always true, so the following corollary is a special
case of Theorem 5. The advantage of this corollary is that no information about
min S,, and max S,, is needed to check whether the weak convexity assumption on a
given Q is satisfied.

Corollary 7. Let (a,b)<S,. If Q is weak convex on (a,b) with basepoints min X and
max X then (a,b)nZ(w) = 0.

In particular, when X is, say, lower bounded, and we write out the definition of
weak convexity, we gain Corollary 8.

Corollary 8. Let X = [A,+0) be a half-line and let (a,b)<=S,,. Suppose that Q is
absolutely continuous inside (a,b). If for some k€|a,b]

Q(x) is decreasing and convex on (a,x),

(x — A)Q'(x) is non-negative and increasing on (k,b), (2)

then (a,b) " Z(w) = 0.

Remark. Corollary 8 implies that if ¥ = [0,+c0), and

xQ'(x) is increasing on (a,b)=S,,, (3)
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then (a,b)nZ(w) = 0. Eq. (3) is an often used criterion in logarithmic potential
theory (with the assumption that Q is differentiable). Notice that Corollary §
assumes much less about Q, firstly Q does not have to be a differentiable just
absolutely continuous, secondly on the interval (a,k) (where Q'(x)<0), (2) is a
weaker assumption than (3).

Remark. One might ask whether we really need the S, <[4, B] assumption in
Theorem 5. To see that we do, consider the following example. Let

2

VA

v(t) = acypon + (1 —a)e te(—=1,1)u2,2.01] = X,

where y, o1 is the characteristic function of the interval [2,2.01], a€(0,1),and 0<c
is chosen so that [v= 1. If we set

O(x) ::/ log|x — t|v(¢) dt, xe€ZX,

then by Theorem 1.3.3 [4], the extremal measure u,, associated with w = exp(—Q) has
density v(#). We can see easily, that if a is close to 1, then on [—1/2,1/2] 0<Q'(x)
and (1 + x)Q'(x) is increasing, however v(t) ~> as t—0, so by [2] (or [4, Theorem
VI.1.8]), 0 Z(w).

Now let us see some other theorems to demonstrate why the “weak convexity”
is an appropriate generalization of both the “Q is convex”, and the “xQ'(x)
is increasing” conditions. The following theorems are generalizations of
some classical results (see [4, Sections IV.1 and IV.3]). We will also need to prove
Theorem 5.

Theorem 9. Let w = exp(—Q) be an admissible (not necessarily continuous) weight on
R and suppose that Q is weak convex on the interval I with basepoints A,BeR
satisfying S,,<[A, B]. Then S,,n1I is an interval.

Remark. A weight defined on X and the same weight defined on R which is zero on
R\ 2 gives us the same equilibrium measure. Hence, this theorem is as general as if
R were replaced by 2. (We avoided 2 in the formulation, because here we do not
suppose that X is regular with respect to the Dirichlet problem in C\ 2.)

Theorem 10. Let w = exp(—Q) be an admissible (not necessarily continuous) weight on
R and suppose that Q is weak convex on the interval [A, B] satisfying S,, = [A, B]. Then
the support is a finite interval (by Theorem 9), say, S, = [a,b] and the endpoints a,b
satisfy the following conditions:
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(1) If b<B, then
1 [* x—a
L itemant,

(i) if a> A, then

1 (% [h—x
- TN O (x)dx = —1
n/a g 2 (¥ dx :

i) if b= B, then
1 (8 [x—a ,
z ra <1,
ﬂ/a B_xQ(x)dx

(iv) if a= A, then

1 (b [b—x
E/A Xz -1

In the next theorem, we give an integral representation for the density of the
equilibrium measure y,,. We emphasize that such integral representation was known
only in the case when xQ’(x) is increasing so far (see [4, Theorem IV.3.2]), not even
in the case when Q is convex. Now Theorem 11 can also be applied to any convex Q
which has bounded derivative, since every convex function is also weak convex.

In the proof we will define v(¢) almost everywhere, namely on a subset of [—1, 1]
with full measure on which Q'(#) exists and on which Q satisfies the conditions of
weak convexity. (See also Notation 3.) Note also that d,,(7) = v(¢) dt holds only for
a.e. te[—1,1] and not necessarily for all ¢ for which we define v(¢).

Theorem 11. Let w = exp(—Q) be an admissible weight on R such that min S,, = —1,
max S,, = 1. Suppose that Q is weak convex on [—1,1] and that Q' is bounded on
[—1,1]. Let ke [—1, 1] be a number such that

0(x)<0 xe(-1,k),

0 (x)=0 xe(k,1).
Then S\, = [—1,1] (by Theorem 9) and the density of w, is du,(t) =v(z)dt a.e.

te|—1,1], where for a.e. te(—1,x)
e [T 12906) - 100,
V1 -2 4 (s —)V1 —s2

sl 05
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and for a.e. te(x,1):

-1 I +9)0(s) — (1+00(1)

v(t) = ds
0 V1 — 2 J- (s—1)V1—s2
1 1 M (1+5)01(s) ]
4+ — 1——/ —— = ds].
n\/l—tz[ T J_ 1 —s? g
3. Examples

The following external fields are weak convex on the whole X. (We just list
external fields which are weak convex, but not convex.)

(1) O(x) = px*, 0,f>00on X :=[0,4+00). (now w(x) = exp(—px*)).

() Q(x) = plIn(x+a), 2, >0 on X = [0, c0). (now w(x) = 1/(x + a)).

(3) O(x) =0if xe[0,1] and Q(x) =Inxif x=1 on X = [0, 00).

) 0(x) = BIn(1 + |x]) (so w(x) =1/(1+ |x|)ﬁ) on X = [—1, 1]. More generally, if
ap, o021, By, 220, 7€(-1,1) and

1
if xel—1,v],
Y [=1,7]
w(x) = !
— if xe(y,1]
(x + 0)P
is continuous on [—1, 1], then the corresponding Q(x) = —In w(x) external field

is weak convex on [—1,1].
(5) O(x) =1/(-Inx)*, «>0o0n X :=0,1].

By Theorem 9, in these examples the support of the extremal measure associated
with w is a finite interval: [a, b]. So by Theorem 5 (and Theorem C), a continuous
function f can be uniformly approximated by weighted polynomials of the form
w"P, if and only if / vanishes outside the support [a, b]. In some cases with the help
of Theorem 10 we can get the actual values of « and b.

Finally, here is an example to demonstrate the local usage of Theorem 5.

(6) Consider Q(x) :=sinx on X = [0,2]. It is not a weak convex function on [0, 2],
however sin x is weak convex on [0,0.86] with basepoints 0 and 2. Thus by
Theorem 9, J = S,,n[0,0.86] is a closed interval. So by Theorem 5, any
continuous function which vanishes outside J can be uniformly approximated
by weighted polynomials of the form w"P,, where w(x) = exp(—sin x). Notice
that it is no longer an if and only if statement, secondly we have to make sure
that J is not an empty set, since in this case the statement is meaningless.
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3.1. Proofs

First we give a sufficient condition for interchanging differentiation and
integration in a parametric integral, which we will need later. This problem is
discussed in many calculus books, but here we do not assume that the integrand
F(x,1) is a differentiable function of x (when ¢ is fixed), we merely assume absolute
continuity. Our belief is that this more general problem should be discussed in books
dealing with absolutely continuous functions, in the section where they discuss other
classical problems like integration by substitution and integration by parts for
absolutely continuous functions. The condition and the proof we give matches the
simplicity and usefulness of these other two classical theorems.

Definition 12. Let / be an integrable function. We say that a point xR is a weak
Lebesgue point of f, if

1
YT}nX—Xo/f )

We say that a point xpeR is a Lebesgue point of f if

lim

f(x0)| dt =
V—UCnX—Xo/ U( 0|

Clearly every Lebesgue point is also a weak Lebesgue point. It is known that for an
integrable function almost every point is a Lebesgue point, therefore almost every
point is a weak Lebesgue point.

Lemma 13. Let F:[0,1] x [0,1] >R be a function so that x+— F(x, ty) is absolutely
continuous for a.e. ty€[0,1]. Thus for a.e. tge(0,1], Fi(x,10) = ZF(x,ty) exists for
a.e. xel0,1]. Suppose Sfurther that F\(x,t) is measurable on the product space [0, 1] x
[0,1]. Let V(ty) fo |Fi(x,20)| dx (a.e. to€[0,1]) be the total variation of F\(x,t)
and ¢(x fo Fi(x, 1) dt (a.e. xe[0,1]).

Iffo 1) dt< oo and xo€(0, 1] is a weak Lebesgue point of ¢, then

% [/01 F(x,l)dl} (x0) = /0] Fi(xo, 1) dt.

Proof. Using the absolute continuity assumption and the Fubini theorem we get
1

xle/l(F(xla) F(xo, 1)) dt = xlfxo/ / Fi(x,7) dx dt

X1—X0 /,0 ol
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(We could change the order of integration since fol fol |Fi(x, 1) dxdt< + c0.) But
X 1s a weak Lebesgue point of ¢, so

lim
X1—=Xx0 X1 — X0

X1 1
/ $(x) dx = d(xp) = /0 Fi(xo,1) d, (4)

which proves the statement. [

Corollary 14. If x> F(x,ty) is absolutely continuous for a.e. tH€[0,1] and
Fi(x,1)e L'([0,1] x [0, 1]), then

% [/01 F(x,1) dt} (x0) = /01 Fy(xo, 1) dt

holds for a.e. xo€]0,1].

Proof. fol |p(x)| dx< fol fol |Fy(x,1)| dtdx< oo, so ¢eL'[0,1]. Thus, almost every
point of [0, 1] is a weak Lebesgue point of ¢ and the statement follows by applying
Lemma 13. O

Proof of Theorem 9. Since S,, is bounded, if any of 4 and B is infinite we can replace
them by a finite value so that S, =[A, B] still holds (see also Proposition 4). So we
can assume that 4 and B are finite.

Suppose indirectly that there exist a,be S, NI, a<b: (a,b)nS, = 0.

Let u = p,, denote the equilibrium measure associated with w and

— M — 1
U(x) = U*(x) .f/R In T du(t)
be the logarithmic potential function of u. Clearly U(x) is absolutely continuous on
every closed subset of (a,b), and because of the Lebesgue monotone convergence
theorem, U(x) is continuous on [, b]. (Indeed, we may assume that |B — A|<1, so
In(1/|x —#])>0 x,1€[4, B]. We split the above integral to two integrals, one with
measure p|_, , and the other with measure |y, , ). Since U(a) and U(b) are finite
from (1), we can apply Lebesgue’s theorem to the two integrals.) So U(x) is
absolutely continuous on [a, b].
Since [, —=du(7) is continuous in (a,b), by Lemma 13,
-1

U'(x) = Edﬂ(l), xe(a,b).

Notice that both 7(3;") and 7&:/1) are strictly increasing functions of xe(a,b) for
any fixed te(4,a]u b, B) and they are increasing functions if 1 = A4 or t = B. We
know that u({A4}) = u({B}) = 0 (because u has finite logarithmic energy) and since
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S\, <[4, B] we get that both (B — x)U’(x) and (x — 4) U'(x) are strictly increasing on
(a,b).

Let R(x) = U(x) + Q(x) and let k€[4, B] be the number from the definition of
weak convexity, that is

0 (x)<0 xe(4,x)N1,

Q0'(x)=>0 xe(k,B)NI. (5)
Let E:=(B—x)/(k— A) if k# A4 and E := 1 otherwise. Consider the function

£l = { (B-)[U(x)+0(x)] if xe(4,x)n(a,b)
| Ex =AU (x) + Q' (x)] if xe(x,B)n(a,b).

Since U’ is continuous on (a,b), from (5) it follows that f is a strictly increasing
function on the whole (a,b). Therefore, we cannot find numbers xj,x, €1, x| <X,
for which both 0 < R'(x;) and 0> R(x;) hold.

From Theorem A we have R(x)=U(x)+ Q(x)>F, xe(a,b) and
R(a), R(b) <F,. It is impossible that R(x) = F, for all ye(a,b), because then f(x)
would not be strictly increasing. So there is a ye(a,b): F,, <R(y). If we also use the
limit condition of weak convexity (Definition 2), we get

0<R(y) — Fy<R(y) — R(a)<R(y)— lim R(x)= lim ’ R (1) dt,

x—a+0 x—at+0 [,
which implies the existence of x; €(a,y): 0<R'(x;). Similarly

0>F, — R(y)> R(b) = R(y)> lim R(x) - R(y)

= lim R'(¢) dt,
x—b-0 y

so there is an x> € (y,b): 0> R'(x). This is a contradiction. [

Proof of Theorem 10. As in the proof of Theorem 9, we can assume again that 4 and
B are finite.

We shall only prove (i) and (iii), the other two follow by the symmetry of the
statement.

If K<R is a compact set, we define

F(K) = logcap(K) — / Qdok

where wg is the equilibrium measure of K. This is called the F-functional for w and
from [4, Theorem IV.1.5], we know that

F(Sy) = F(la, b)) = max F([e, B), (6)
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where the maximum is taken over all nondegenerate intervals [a, f] <[4, B]. Now
from [4, Example 1.3.5] we have

- d
Cap[% /),] = %v dw[a,/}] = /(% — ;C)(ﬁ = x)’ X€E [OC, ]
and so
F(la. ) = log” 96

Viix—a)(f—x)

On making the change of variable

_B+a p-a
=2 T

cosf, 0<0<m,
we can rewrite F([a, }]) as

F([a,fB]) :logﬁ;a—l /On Q<ﬂ;a+ﬁ;acose) do.

T

Using (1) and the lower semi-continuity of Q it follows that Q is bounded on [a, ).
Thus from the Lebesgue dominated convergence theorem f+— F([a,f]) is a
continuous function on [a,b]. Interchanging differentiation and integration,
we get

QF([aﬁD:Bia*% o Q,<ﬁ;a+ﬁ;acos6>

X (1 4+cosf)dbd pe(a,B). (7)

To verify the differentiation, we will show that

h(p) = / Q’<¥+ﬁ;acos6>(l+c050)d0
0
2 b x—a ,
_—ﬁ—a/a B_XQ(x)dx

is a continuous real function of f§ on (a, B) and

<ﬁ+a B;acos(9>(l+0050)‘d9 (8)
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is bounded inside (a,B) (see Lemma 13). We will also see that limg_, 3- 4(f) exists
and equal to /(B) (infinity value is allowed). Thus from the Lagrange mean value
theorem we can conclude that (7) holds on (a, B] in the case when b = B. Now if
b< B, we gain (i) immediately from (7), since by (6) %F ([a, p]) has to be zero at
B = b. On the other hand if » = B, we gain (iii) by the same logic, since by (6) the left
derivative has to be £ F([a, B])[5_p <O0.

The boundedness of (8) can be proved similarly as the finiteness of /(f) on (a, B)
(see below). Thus it remained to prove that A(f) is continuous on (a, B] in the
extended sense. Let k¥ be a number so that

0(x)<0 xe[4,x)

0(x)=>0 xe(x, Bl

First we show that /(f) is a finite valued function on (a, B). So let i€ (a, B). Notice
that because of our monotonicity assumptions, Q' is bounded inside (4, B). So A(f})
is clearly finite if A <a. If, however, a = A, we have to distinguish two cases:

® If A<k, then

/K Q' (x)dx = lim K Q' (x) dx
4

e=0% J g4

= lim (Q(K) - O(4+2))> — o,

since Q is bounded on [a, b].
® If A =k, then

h(ﬁ) — 2 A (X—A)Q/(X)
f—als /x—A)(B-x)

since (x — A)Q'(x) is a (non-negative) increasing function.

dx< + o0,

These show that /(f) is finite in both cases.

We are done, if we can show that for any ue[4, B) and for any f € L'[4, B] non-
negative decreasing function,

/ﬁ f)vx—a
v (B=x)Vf—x

is a continuous function of B on (u, B], while if ge L[4, B] is any non-negative
increasing function, then

/ﬂ gvE—a_
v (x=AWP—x

is continuous on (u, B] and continuous on [u, B, if 4<u.

©)
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Indeed, if a<f <k, then we use

Y e D (OO
I A N =

where f(x) = —(B—x)Q'(x) is decreasing on [4,k), while if a<k<f<B or
k<a<f<B, we use

/aﬁ \/;_:le(x)dxz/aK ;:iQ’(x)dx—i—/Kﬁ%dx

I x=a_, _ " gvx—a
/a B_XQ(x)dx—/u = A) —ﬁfxd’

respectively, where g(x) := (x — 4)Q’(x) is increasing on (i, B]. Here

/K
a

is clearly a continuous function of f on [k,B] by the Lebesgue monotone
convergence theorem.
Consider

or

— jlc Q' (x) dx

Yo

u x)VB—

/fﬁ“’—&-ﬁ cos@)( + cos 0)
Fru 4 Pt cos 0))

h(B) =

do.

If f— B, € (u, B), the integrands at the right-hand side have an integrable majorant
(cr (ﬁ ity B F5=cos 0), where u< 8; <), so by the Lebesgue dominated convergence
theorem

do.

Bo—u /" limﬂ%ﬁof(¥ + ?cos 0)(1 4 cos 0)
2

lim Jn(f) =
i, M (h) (B— (B 4 Beos )

B=Bo

But f is continuous almost everywhere and arccos x is an absolutely continuous
function, thus for almost every 0e[0,n] we have limg_p, f([”“ + '32 cos ) =
f (Bt Pzt oo 0). This means that /() is continuous at f.

Now let 8, := B and we will prove that /; () is continuous at B from the left in the

extended sense (i.e., s;(B) = +oo is allowed). We may suppose right away that
hi(B)< + oo, since if h;(B) = 4+ o0, then limg_, g /() = + o0 is clear.
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Let 0<D be any (big) number and ¢ := ¢(ff) = B — f. Consider

= [ O /uﬁD£+/ﬁﬁDE‘

p—De ﬁ D8 p— DSf X—Cl
==y
< ID+1 [Bf(x)y/x—a
D J, (B-

Now

(11)

We will show that the second term in (10), f;fst is going to 0, as f— B~. Since 0< D

was arbitrary, this together with (11) imply that

lim sup A, () <hi(B).
BB

Now

A f(x)vVx—a » f(p— De) B 1 .
.ADMB—vaffigc B-§ Alkdﬁ—xd
S (B — De)
— (B—De)

< Cp

(12)

(13)

where Cp depends on D, but not on 5. As f— B~, ¢ = ¢(f§) >0, so to prove that the

right-hand side of (13) is going to 0, we have to show that

)
p—B- B — ﬁ

=0.

This latter limit follows from

/f ~ dx<+oo

Indeed, with a simplified notation, we claim that

lim JE:O

g0t \/5

(14)

follows from fo x)Vd — x/x'3 dx< co (where f is any non-negative increasing

function and 1<d is arbltrary).
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Notice that for any small 0 <g,

Szrf( )x\/1 X iy >Cf(\>/g_)

so if we choose any & >¢& >¢3> --- >0 with the constraint that [e, 2¢;], [e2, 2&2], ...
are disjoint intervals, then

o 2 \/—
OO>/f i Z _f

which implies that lim(f'(¢;) /y/;) = 0. From this fact (14) follows easily.
So (12) is proved. To get

lim inf /1 (8) > /1 (B)

we just have to look at

/5 f(x)vx—a Iv> ﬁf(x)\/x—adx
u ( —X)\/ﬁ—x - u (B X)l‘s

—>/ Sl dx as f—>B".

Therefore the continuity of /;(f) at B is established.

The continuity of (9) on (u, B] follows with the same argument. Finally, if 4 <u,
then g(x) and x — 4 are bounded in a neighborhood of u, so (9) tends to 0 as f§ tends
to u from the left, hence (9) is continuous on [u, B].

The proof of Theorem 10 is now complete. [

Definition 15. Let fe L'a,b]. For xe(a,b) the Cauchy principal value integral is
defined as

b&:hm( Xﬂ;{ﬂds—l— ' &ds)

e S—X &0 - X xpe S—X

if this limit exists. If x¢(a,b), the PV integral is simply an ordinary Lebesgue
integral (which clearly exists if x ¢ [a, b)):

I [0,

. S—X « S—X

A well-known theorem states that for almost every x in [—1, 1] the above principal
value integral exists and finite.



170 D. Benko | Journal of Approximation Theory 120 (2003) 153-182

Proof of Theorem 11

Lemma 16. Let w = exp(—Q) be an admissible weight on R so that S, = [—1,1].
Suppose that Q is absolutely continuous on [—1,1] and that Q' (which exists a.e. in
[—1,1)) is bounded in [—1,1]. Let

1 /1 _ 20
Ly [ V=800,
V1 — 12 -1 §—1
1
b te[-1,1]. 15
e bl 13

If 0<u(¢) a.e. te[—1,1], then du,, (1) = v(t) dt a.e. te[—1,1].

o(t) =

Proof. Let wi(x) = exp(—Q;(x)) be and admissible weight on R such that Q; is
absolutely continuous on [0, 1] and Q] is bounded on [0, 1]. Consider the expression

F / s—:Ql 1_S)ds
*m(l‘%/o el

Exactly as in the proof of Theorem IV.3.2. in [4], if we set f(x) = Q;(x?)/2 and
apply Theorem 1V.3.1 in [4], we get that fol g=1and fol In |x — t|g(¢) dif = Q1(x) +
C with some constant C for all xe(—1,1). ([4, Theorem IV.3.1], is originated from
[3]. Note that in the formulation of this theorem there is a missing hypothesis: f
should be absolutely continuous on [—1, 1].) If we transfer this statement from [0, 1]
o [—1,1] by a linear transformation, we get the following:

Let

1—1¢ L (149)0(s)
R sl B
1 LM (14900
+ T (1 _E/—l IV e ds) te(—1,1),
then fil v=1, and
/1 In|x — fo(t) di = O(x) + C  xe(=1,1) (16)
-1

with some constant C. We assumed that 0<v(¢) almost everywhere and therefore by
Theorem 1.3.3 in [4], du,, (1) = v(f) dt a.e. te[—1, 1] as we stated. (Because of (16) and
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the boundedness of Q on [—1, 1], the finite logarithmic energy condition of 1.3.3 is
satisfied.)

To get (15) we just have to combine the two integrals above in the representation
of v(r). O

Now we can prove Theorem 11 as follows:
Let re[—1, 1] be arbitrary. We will find another form of the function v in Lemma
16. We will make use of the identity (see [4, Formula IV (3.20)])

: 1
PV/71 mdszo te(—l,l) Now (17)

b T A =0)
o) _ﬂZM[PV[l (s — t)mds

' (1-5)0(s)
+PV/r (s—l)\/l—s2ds]+n\/1—l2

_ ml_—tz lPV / [(1+t><1—(ss>_+l)%—s>]Q'<s>ds
+PV[1 [(1—z><1+(ss>—t)<sl—fr~>§ +5)0() +¢1—1—~,~
o
v(l)znz\l/%PV _rl %aﬁv
" %PV ,l (s(l—t)sx)/?i—wszd” w2
e e i = L

Let ke[—1, 1] be a number so that

0(x)<0 xe(-1,x)

O(x)=0 xe(x,1).
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Let re(—1,x) be a value for which Q'(¢) exists. Setting r := 1 and using (17), we get

I+t L, (1 =9)0(s) — (1 =0)Q(1)

o) :WT—IZ -1 (s —t)V1—s2 @
! 1 (1 =-90()
+n\/1—t2{1+;/—1 V1—s? ds}

By Theorem 10 the second term is non-negative.
From the assumptions of Theorem 11, clearly

(1=95)0(s) = (1 =00 (1)

s—1t

is non-negative, when s€ (—1, k), and it is also non-negative, when s€ (x, 1). (For the
latter, consider the sign of Q')

Thus on the set {te(—1,k): Q'(¢) exists} we have 0<v(¢) and v(¢) has the form as
given in Theorem 11. If in (18) we set r := —1, we can see the same way that on the
set {re(x,1): Q'(¢) exists} we have 0<v(r) and v(¢) has the form as given in
Theorem 11.

So 0<ov(?) a.e. te[—1,1], and du,(t) =v(t)dt follows from the previous
lemma. O

Proof of Theorem 6. Since w is absolutely continuous inside (a,b) and dw(x)/dx =
—w(x)Q'(x) is in every [P, 1<p< oo inside (a,b) (because Q' is bounded inside
(a, b)), it follows from [4, Theorem IV.2.2] that p,, is absolutely continuous and its
derivative is in every L” inside (a,b). We shall denote the density duy()/dt by v(t).

Now we prove the first part of Theorem 6, that is:

Lemma 17. If (a,b) =S, and Q is weak convex on (a,b) with basepoints min S,, and
max S, then v has a positive lower bound inside (a,b).

Proof. The same argument works as in the proof of Theorem F (see [6]), since now
Theorem 9 is at our disposal.

For any positive 4, clearly AQ is also weak convex on (a, b) with basepoints min S,,
and max S, so by Theorem 9, S, " (a,b) is an interval with endpoints a;, b;. We
show that if 1</ is sufficiently close to 1, then a; is sufficiently close to a and b, is
sufficiently close to b.

It is enough to prove that in any neighborhood of any point x¢ of (a, b) there is a
point x; lying in some (a;,b,), 1<A. Indeed, then this property and the decreasing
character of the support S, namely S, =S, for r;>r; (see [4, Theorem 1V.4.1])
imply our claim.
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Now we use the following characterization of points in the support S,,: xo€S,, if
and only if for every neighborhood B of Xy, there is an n and a polynomial P, of
degree at most n such that w"|P,| attains its maximum in 2 at some point of BN X
and nowhere outside B (see [4, Corollary 1V.1.4]). By continuity then the same is true
of w!| P,| for some 1 < 4 sufficiently close to 1. But [[w"'P,||, = ||wi”P,,||S‘_) A(C\Zis
a regular domain, so for any continuous w we have |[W"P,[|x = [[W"P,]| , see [4,
Corollary II1.2.6]) Therefore, BN S, #0 and so in B there is an x lying in (a;, b;) as
we claimed above.

Thus, if [@', §'] is any subinterval of (a, b), there is a 4> 1 such that [, '] is in the
support of y,;. Now we invoke the inequality ([4, Theorem 1V.4.9]):

1 1

where wg, denotes the equilibrium measure of the set S,, (which is nothing else than
the equilibrium measure corresponding to the identically zero field on S),). Since
[@',b] is part of S, and the equilibrium measure wg, has a positive and continuous
density in (&, b'), it follows that the density of p,, has a positive lower bound inside
(d,b). Here, [d',b]<=(a,b) was arbitrary, so the proof of the lemma is
complete. [

It remained to prove the second part of Theorem 6. To do this, first we need the
concept of the balayage measure. Let v be a measure on the real line and K be an
interval. There is a unique measure ¥ supported on K such that the total mass of ¥
equals the total mass of v and for some constant d we have U'(x) = U"(x) + d for
every xe K. v is called the balayage of v onto K. Actually, the balayage process
moves (sweeps) only the part of v lying outside K, i.e.,

V=g +Vlpak- (19)

For the second measure on the right there is a closed form (see [4, Formula 11.4.47]),
which shows that by taking balayage onto K, we add to the portion of v lying in K a
measure with a continuous density.

The relevance of the balayage to extremal fields is explained by the following: if
K< S, is a closed interval and w is the restriction of w onto K (i.e., the weight w; is
considered on K), then the equilibrium measure pu,, associated with w is the
balayage of p, onto K (see [4, Theorem IV.1.6(e)]).

Now we will make some elementary observations regarding functions with
“smooth integral”. We leave the proofs of the first two propositions to the reader.

We say that a family of functions has uniformly smooth integrals, if the J in the
definition of a function with smooth integral is independent of the function in the
family. (See also Definition D.)

Proposition 18. Non-negative linear combination of finitely many functions with
smooth integrals is again with smooth integral. More generally, if v is a finite positive
Borel measure on B=R and {vs(x): s€ B} is a family of functions with uniformly smooth
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integral on [a, b] for which s+ vs(x) is a measureable function for a.e. x€|a,b], then
v(x) = / vg(x) dv(s)
B
has also smooth integral on [a,b).
The proof of the next simple statement can be found in [6].

Proposition 19. If vy has smooth integral, 0<v, is continuous, and vy — v, has a
positive lower bound, then vy — vy has also smooth integral.

Proposition 20. The function log(1/|x|) has smooth integral on any interval [—a, al,
where 0 <a<1.

Proof. Let
f:_r —In |x| dx
bt = bt 4 0
f;” —In |x]| dx
where —a<b — 1<b + 1<a. We have to show that for any 0 <e there is a 0 < such
that |Rp. — 1| <& whenever 7<J.
By symmetry we can suppose that 0<<b.
Suppose first that b<27. Obviously,
2 in|x|d .
f7 n|x| X: T(l*lni)
23: —In|x|dx 3t(1 —In(37)) — 27(1 —In(27))
_ I —In3
1 +1n(16/216) — Inf

1 <Rb,r <

which tends to 1 as 1—0.

Therefore from now on we can suppose that 2t<h. Again 1 <R; . Let us suppose
indirectly that for some 0<¢ there are positive sequences b, and t, such that [b, —
Ty, by + 1y < [tn, a4, 1,—0, and 1 +e< Ry, ;,.

Since 1, /b, is bounded, we may select a converging subsequence from it, so we can
assume that 1,/b, > p, where p€[0,1]. By direct calculation

Tt —byInb, + (b, — 1) In(b, — 1)
P+ by by — (by + ) In(by + 1)
7,(1 = Inb,) + (b, — 7)) In(1 — }7—)
" 1,(1 =Inb,) — (b, +1,) In(1 +3)

1+b : :
- 2 In(1-)~In(1-3)
_ In b,
T by ey (20)
P n(1+35)—In(1+3%)
In b,

If 0<p, then b, — 0 necessarily, thus In b, - — oo and the limit of (20) is 1.
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If, however, p = 0, then we use the elementary limits lim, %ln(l —v7)=—1and
lim, o 2In(1+7) = 1. Thus lim(1+2In(1-) —In(1—7)) =0 and lim(l -

f—:ln(l +3) —In(1 + 7)) = 0 (as n— c0), which imply that the limit of (20) is again
1. This contradiction proves the lemma. [

After these preparations we start proving the second part of Theorem 6, that is:

Theorem 21. If (a,b) =SS, and Q is weak convex on (a,b) with basepoints min S,, and
max Sy, then v has a smooth integral inside (a,b).

Proof. Let us restrict w to [a,b]. Based on what we said about the balayage and
smooth integral, it is enough to prove that the equilibrium measure associated with
this restricted weight function has a density v; which has smooth integral inside
(a,b). Indeed, by (19), v = v; — vy, where 0<wv, is continuous and v has a positive
lower bound inside (a,b), so if v; has smooth integral inside (a,b), so does v.

Therefore from now on we will assume that w is defined on [a, 8], i.e., £ = [a,]].
We will continue to use v for the density of the equilibrium measure associated with
this restricted w. Furthermore, because of the balayage process, the new support S,,
is the interval [a, b] (so v is defined on [a, b]). As a result of this, we will be able to
apply Theorem 11 to get a formula for v. (We remark that the hypothesis of Theorem
21 is still satisfied, since Q is weak convex on (a,b) by Proposition 4.)

Now we will prove three lemmas:

Lemma 22. Let f'e L'[c,d] be a function and suppose that f(s) is Lipschitz continuous

on [¢, 5] with Lipschitz constant L. Let v*(t) = f:l Lf(s)ds (t<c). Then for every

te(c — min(exp ﬁ,%),c)
) (1L +SYL+ D)+ fll1eq
Lm@—n Fo)< “In(c 1) '

-4 1
(d—c)z’ e

Proof. Let 7€ (c — min(exp

1
—In(c — 1)’

),¢). Then ¢ — t<1 and we can define

Because of the Lipschitz continuity of £, |[f(s) — f(c)|< L(s — ¢) for all se|c, (¢ +
d)/2]. If we divide by s — ¢ and integrate, we get

c+t e+t
/C éf(v) ds — /C %f(c) ds

“Hrts—¢ “ro
<L/ dsgLr/ ds.
c s—1 ¢ s—t

(Note that from te (¢ — min(exp <dj)z,%), ¢) it follows that ¢ + 1< (c +d)/2.)




176 D. Benko | Journal of Approximation Theory 120 (2003) 153-182

This means that

d
v*(1) — /c ! tf(s) ds — (In(c+t—1t) —In(c —1))f(c)

+r S
<Lt(ln(c+7—1) —In(c — 1)),

and here | fir |<||f|l.:1/7- By the triangle inequality we get

v*(1) In(c+t—1)
‘—ln(c —1) —/9)< Lr(l * —In(c — 1) >
g OIS

Notice that if In(c + 1t — ¢) >0, then

1n((c—t)+r)<ln(l+dgc)<d;c

because as we mentioned, 1< (d — ¢)/2. If however In(c + © — ¢) <0, then

In(c+1—1)=—-In((c—1) + 1)< —In(1) <

Q-

Therefore in all cases

e

<re(1+ 8O o (I 9B

—In(c —1) —In(c—1t) —In(c—1)

Since from 7>c¢ — 1 we have 1 <t<1, the statement follows immediately. [

Lemma 23. Let —1<a<f<]1 and let a(t),b(t),f(¢),9(t) be positive continuous

functions on (—1,1) so that f(t),g(t)e L'|—1, 1]. Suppose also that f(s) is Lipschitz

p+1
72

¢ (1) = {a(l)fc Lf(s)ds, te(—1,c),

o

continuous on [0,55=] and g(s) is Lipschitz continuous on [%5, B]. Define
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and
pe(t) = ¢.(t) + ¥ (1), F ={p.(t): celo,p]}.

If a(c)f (c) = b(c)g(c) for all cela, P, then the family of function F has uniformly
smooth integral on o, f].

Proof. In this proof let us agree on the following (unusual) notation: we say that a
function (of ¢, ¢, I and J) is o(1) if it is uniformly tending to 0 on its specified domain
as ¢—0. This domain can depend on & For example since a(f) is a continuous
function, we may write: a(t) = a(c) + o(1) for te[c,c +¢] as ¢—>0.

Let 7 == [u—¢,u] and J = [u,u + ¢] be two adjacent intervals of [«, ] with 0<e.
Define

_ Jipe(n)dr
V(;(I, .]) = m

To be able to use Lemma 22, we suppose that 3<min(%, exp (1:2)2). Now 0 =
Ve —2e>0.
Let us fix an arbitrary ce (o, ] and let d .= max(c — 0, «) and e := min(c + 9, f§).
Case 1: Suppose that (IuJ)<=]o, d].

The function

h(t) = / L (s) ds

s—1

is increasing on (0, ¢), therefore

h(u—s)/[ a(z)dz</l 6.(1) dt<h(u)/] alf) dt
h(u) / dz</¢ quc)/J a(t) dt

from which

and

f’ alt) and v.(J I)Sh(u+8)fj a(t) di

S, alr) de S h(u—e) [pa(t)dr

But a(f) has smooth integral on [z, f]. Also

(I, J) <

h(u+ &)< (1 +%)h(u —é);
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which can be gained by integrating the following inequality with respect to s from ¢
to 1:

1
s— (u+e)

But ¢ — (u+¢)=0, so h(u+e)/h(u—e)<1+2¢/(Ve—2) =1

Thus we have proved that v.(I,J) =1+ o(1) and v.(J,I)
where (TuJ) <o, d].

Case 2: Suppose that (IuJ)<|e, f]. Exactly as in case 1, we can see that v.(I,J) =
1+ o(1) and v.(J,I) = 1 +0(1) as e—0, where (IUJ) e, fi].

Case 3: Now suppose that (IuJ)n(d,e)#0. Let d’' .= max(c — \/¢,a) and ¢ =
min(c + /¢, B). Because of our assumption, IuJ <= [d’, ¢'].

Let first 7€ (d’, ¢) be arbitrary and define the function A(¢) as in case 1.

From Lemma 22, we have

’ (1)

101+ g )= O

+o(1).
=1+o0(1) as ¢-0,

(1+59YL+1(0)) + ey
—In(c — 1)

—a(t) In(c — 1) f(c)‘ < (21)

where L is the Lipschitz constant of / on the interval [c,<}!]. But cea, ], so

) —f(x)
L< ygs[l?@ﬁ/yy—x

)
X#Y

is a finite global upper bound for the possible Lipschitz constants. Also,
S < lpp and [[f 1] z1e1) <If 112111 1)- Therefore, the numerator of (21) is bounded

by a global constant (which depends on the function f(s) only).

Since now te(d’,c), ¢ — t<+/g,s0 1/y/—In(c — 1) = 1 + 0(1) as ¢~ 0. From these,
we can conclude that

#(?c—l)f(c) =o(l) te(d,c) as e—0. (22)

We also know that a(¢) is a continuous function, so
a(t) = a(c) +o(1) for te(d',c) as 0. (23)

a(t) and f(r) are bounded on [«, f] and so from (22) and (23) we can see that

$.(0) = (a(e)f () + o(1)) In——

c—1

for te(d’,c) as ¢—>0.
Now if € (c, ¢'), the same argument shows that

V(1) = (a(e)f (¢) + 0(1)) In

for te(c,¢') as e—0. (Here we used the assumption, that b(c)g(c) = a(c)f(¢).)

t—c¢
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Putting these together, we have

1
e —1]

pc(1) = (a(c)f (¢) +o(1)) In

for te(d',¢') as e—0.
Since the functions a(c) and f(c) have a positive lower bound on [«, fi], we get
a(e)f (¢) +o(1) f; lnkljdt_ Jy In g dt

veld 1) = a(c)f (c) +o(1) f, ln\c’iit\dt e W

By Proposition 20, log(1/|x|) has smooth integral on any interval [—a,a], 0<a<1.
Thus the second factor is 1 4+ o(1) as e—0, so

ve(J, 1) =1+0(1) where I,J=(d',¢') as ¢—0,
and similarly
ve(I,J)=1+0(1) where I,J<=(d',€) as ¢—0.

Cases 1-3 together proves that the family of functions & has uniformly smooth
integral on [o, f]. O

Lemma 24. Let H be a monotone increasing function on (—1,1) which is absolutely
continuous inside (—1,1) and for which H(s)/v'1 — s> L'[—1,1]. Define

ve(x) = —PV/:; (s—x);lx/fsz ds cel-1,1], xe(-1,1)

(which is a principal value integral, if x <c). Then we can integrate by parts as follows:

PV/_I1 %dsz /_l1 vs(x)dH (s), ae. xe[-1,1]. (24)

Proof. In fact (24) is true whenever H'(x) exists at x. Since the derivative of H exists
almost everywhere, this will prove the lemma.
Because of (17) we can define v.(x) with regular integrals, too:

. 1
ne(x) = — (s —x)V1—s2ds
fl : if x<c

“(s—x)V1—s2ds

if e<x,
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! H(s)
PV/A (s —x)V1—s2 @

= lim
-0+

o ———ds|.
/71 (s — \/1—s2 /+s (s —x) 1—s2 ]

Here [*,°= ["°+ [“ and f;ﬂ = ffﬂJrfbl where the second terms tend to 0 as
a— — 17, b— 1. Integrating by parts, we get

o H(s) ’ H(s)
/a (sx)\/lszds+/x+g (sfx)\/lfszds

= o (O H(x — &) + va(x)Ha) + / () dH(s)
b

() H(b) + b () H (x4 &) + / 5y(x) dH (s).

X+e

We will show that lim,_,_+ v,(x)H(a) =0, lim;Hl vp(x)H(b) =0, and if H'(x)

exists at x, then lim,_, o+ [vx1(X)H(x + &) — vx_(x)H(x — &)] = 0.
From these the statement of the lemma follows:
We have

Vg (X)H (X 4 &) — vy_g(x)H(x — &)
) — pems COH x4 ) — ey () [H s — ) — Hx +2))

Here lim; o+ [Ux1¢(X) — vx—(x)] = PV fil mds =0, H(x+¢) is bounded as
¢—0" and

lim H(x—s)—H(x—&—s)_)

— H'(x).
e—0F 2¢ (X)

We can also see, that lim,_,¢+ev,_.(x) = 0, since

X—& 1
0< vy—e(x) = / —————ds

1 (x —S)vl — 52
X—&
< Cl/ X ds<C11n —|—C2
—1 -

It has remained to prove that lim,,_i+v,(x)H(a)=0 (the proof of
limy_, - vp(x)H(b) = 0 is the same). First notice that v,(x) behaves like C\/(1 + a)
as a— — 17. Therefore we are done, if we can prove the following: If / is a monotone
function for which A(s)/y/se L'[0, 1], then Slirg V/sh(s) = 0. Indeed, if this limit is not

zero, then there exist a 0<¢ and a decreasing sequence s, —0: 6/./5,<|h(s,)|. We
can suppose that |A(s)| is decreasing in (0, p) for some p. (The increasing case is
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obvious.) We can also suppose that s;<p. Now

/0(5 %ds;i( — Spy1) — = ZT: ( Sn+1)

1 n n

But this infinite sum is infinity, since [[su41/8» =0. This contradicts

h(s)/\/seL'[0,1. O

At last we are in the position to finish the proof of Theorem 6. We already have
proven the first part of the theorem (see Lemma 17). It remains to show that the
density of the equilibrium measure has smooth integral inside (a,b). We have seen
that it is enough to give a proof when the support is an interval, that is:

If'S,, = |a,b] and Q is weak convex on (a,b), then the density v has smooth integral
inside (a,b).

(Although by the balayage process we achieved that X = [a, b], in this statement X
does not have to be [a,b]. All we need is S), to be an interval. We also remark
that although the proof will be short, everything we proved so far is used in the
proof.)

Proof. We can suppose that a=—1, b=1. Let [o,f]=(—1,1) be an arbitrary

interval.
Let kxe[—1, 1] be a number for which

0(x)<0 xe(-1,k),

0 (x)=0 xe(x,1).

Let us define

1+1¢ .
— L (1-9Qs) if se(~1,),
F(s, 1) = eVl -2
T 1—1¢
——(1+9)0'(s) if se(x,1).
S (1901 i se(i, 1)
If in (18) we choose r == k, we get
! F(s,x0)
v(x :PV/ x0€ (
(o) —1 (s — xp) \/l—s (1—x2) ’

where E€R is some constant, so by Lemma 24:

o(xo) = / (o) dF (s, x0) - —E
= (1- )
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where the variable of the integration is s, and

s 1
vs(x0) = _PV/1WT:;§CZZ
Therefore
1+1¢ * ,
v(1) “ovice ). vs(0)d[(1 = 5) Q' (s)]
_ 1

+ nz\l/l——l—tz vs(0)d[(1+ )0/ (s)] — \/IL——IZ te(—1,1). (25)
Setting f'(s) == g(s) = 1/V1 — s and a(¢) = b(t) = n\l/% in Lemma 23, we gain

that the family of functions

{anzlﬁL_’_ﬂuc(z): ce[—l,l]}

has uniformly smooth integral on [«, f]. So by Proposition 18, the first term of (25)
has smooth integral on [o, f]. Similarly the second term of (25) has also smooth
integral on [o, f].

Since v(¢) has a positive lower bound on [o, ], no matter what the sign of E is, v(?)
has a smooth integral on [a, §] by Propositions 18 and 19. This completes the proof
of Theorem 6. [
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