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Abstract

It is proven that if xQ0ðxÞ is increasing on ð0;þNÞ and wðxÞ ¼ expð�QðxÞÞ is the

corresponding weight on ½0;þNÞ; then every continuous function that vanishes outside the

support of the extremal measure associated with w can be uniformly approximated by

weighted polynomials of the form wnPn: This problem was raised by Totik, who proved a

similar result (the Borwein–Saff conjecture) for convex Q: A general criterion is introduced,

too, which guarantees that the support of the extremal measure is an interval. With this

criterion we generalize the above approximation theorem as well as that one, where Q is

supposed to be convex.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In [6], Totik settled a basic conjecture in the theory of approximation by weighted
polynomials of the form wnPn; where w ¼ expð�QÞ is a given weight function. This
conjecture was the Borwein–Saff conjecture and it was stated for convex Q:

In this paper, the same theorem is stated and proved, but for more general Q: The
criterion we use covers the case when (a) Q is convex, and also the case when (b) Q is
defined on ½0;þNÞ and xQ0ðxÞ is increasing. In logarithmic potential theory many
theorems use either (a) or (b) as their assumption on Q; since both of them guarantee
that the support Sw is an interval. The criterion to be introduced is weaker than both
(a) and (b), but still guarantees that the support Sw is an interval. (Furthermore, we
merely assume that Q is absolutely continuous and not necessarily differentiable.)
Thus, this criterion itself is a useful result of this paper.

The reader can find the definition of the logarithmic capacity in [4, I.1]. We say that
a property holds quasi-everywhere, if the set where it does not hold has capacity 0.

E-mail address: benko@math.tamu.edu.

0021-9045/02/$ - see front matter r 2002 Elsevier Science (USA). All rights reserved.

PII: S 0 0 2 1 - 9 0 4 5 ( 0 2 ) 0 0 0 1 7 - 5



Let SCR be a closed set. (We assume that S is regular with respect to the Dirichlet
problem in CWS:) A weight function w on S is said to be admissible, if it satisfies the
following three conditions:

(i) w is upper semi-continuous,
(ii) fxAS: wðxÞ40g has positive capacity,
(iii) if S is unbounded, then jzjwðzÞ-0 as jzj-N; zAS:

Unless otherwise noted, we will always assume in the theorems that w is
continuous.

We define Q by

wðxÞ ¼: expð�QðxÞÞ;

so Q : S-ð�N;N� is a lower semi-continuous function. This Q is called the
external field.

Let MðSÞ be the collection of all positive unit Borel measures with compact
support in S: We define the logarithmic potential of mAMðSÞ as

UmðxÞ :¼
Z

log
1

jx � tj dmðtÞ;

and the weighted energy integral as

IwðmÞ :¼ �
Z Z

logðjx � yjwðxÞwðyÞÞ dmðxÞ dmðyÞ:

We will need the following basic theorem [4, Theorem I.1.3]:

Theorem A. Let w be an admissible (not necessarily continuous) weight on the closed

set S and let Vw :¼ inffIwðmÞ : mAMðSÞg: Then

(a) Vw is finite,
(b) there exists a unique element mwAMðSÞ such that IwðmwÞ ¼ Vw;
(c) setting Fw :¼ Vw �

R
Q dmw; the inequality

UmwðxÞ þ QðxÞXFw

holds quasi-everywhere on S;
(d) the inequality

UmwðxÞ þ QðxÞpFw ð1Þ

holds for all xASw :¼ suppðmwÞ:
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Remark. According to our definition, every measure in MðSÞ has compact support,
so the support Sw is a compact set.

The measure mw is called the equilibrium or extremal measure associated with w:

Notation 1. When we say that a property holds inside G—where G is a subset of

R—we mean that the property is satisfied on every compact subset of G:

We are considering uniform approximation of continuous functions on S by
weighted polynomials of the form wnPn; where deg Pnpn: Theorem B is a Stone–
Weierstrass-type theorem for this kind of approximation (see [1] or [4, Theorem
VI.1.1]). Unless otherwise noted, we will always assume in the theorems that w is
continuous.

Theorem B. There exists a closed set Z ¼ ZðwÞCS; such that a continuous function f

on S is the uniform limit of weighted polynomials wnPn; n ¼ 1; 2;y; if and only if f

vanishes on Z:

Thus, the problem of what functions can be approximated is equivalent to
determining what points lie in ZðwÞ: This latter problem is intimately related to the
density of mw: The support Sw :¼ suppðmwÞ plays a special role (see [5], or [1] or see [4,
Theorem VI.1.2]):

Theorem C. Z*SWðint SwÞ:

The Borwein–Saff conjecture was that Z ¼ SWðint SwÞ; if Q is convex, i.e., a
continuous function f can be approximated by weighted polynomials wnPn; if and
only if f vanishes outside Sw: This was proved by Totik [6], see Theorem G. The idea
of the proof was based on the following definition and theorems:

Definition D. We say that a non-negative function v has smooth integral on an
interval ½a; b�; if for every 0oe there is a 0od; such that if I ; JC½a; b� are two
adjacent intervals of equal length smaller than d; then

Z
I

vpð1 þ eÞ
Z

J

v:

Clearly, all positive continuous functions have smooth integral, but also logð1=jtjÞ
has smooth integral, on any interval ½�a; a�; where 0oao1: (We will prove it later.)
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Theorem E. Let us suppose that ½a; b� is a subset of the support Sw; and the extremal

measure has a density v on ½a; b� that has a positive lower bound and smooth integral

there. Then ða; bÞ-ZðwÞ ¼ |:

Theorem F. Let us suppose that ða; bÞ is a subset of the support Sw; and that Q is

convex on ða; bÞ: Then mw has a density v in ða; bÞ which has a positive lower bound and

smooth integral inside ða; bÞ:

From these two theorems follows:

Theorem G. Let us suppose that ða; bÞ is a subset of the support Sw; and that Q is

convex on ða; bÞ: Then ða; bÞ-ZðwÞ ¼ |: In particular, every function that vanishes

outside ða; bÞ can be uniformly approximated by weighted polynomials of the form wnPn:

Notice that Theorem G (as well as its generalization, Theorem 5) is a local result; it
works for any part of the extremal support where Q is convex.

Totik raised the question whether Theorem G is still valid if S ¼ ½0;þNÞ and if
we replace the convexity condition with the condition that xQ0ðxÞ is increasing.
Theorem 5 answers this question positively.

2. Main results

Definition 2. We say that a function Q : D- %R ðDCRÞ is weak convex on an interval

I ¼ ½ða; bÞ�CD ða; bA %RÞ with basepoints A;BA %R; AoB; if the following properties
hold:

(i) IC½A;B�;
(ii) Q is absolutely continuous inside ða; bÞ (so Q0 exists a.e. in I),
(iii) if aAI ; then

lim
x-aþ0

QðxÞrQðaÞ;

and if bAI ; then

lim
x-b�0

QðxÞpQðbÞ;

(iv) for some kA½a; b�:
Q0ðxÞp0 on ða; kÞ;

Q0ðxÞX0 on ðk; bÞ:

(v) ðB � xÞQ0ðxÞ is increasing on ða; kÞ;
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(vi) ðx � AÞQ0ðxÞ is increasing on ðk; bÞ:

If B ¼ þN; we replace (v) by

(v)* Q0ðxÞ is increasing on ða; kÞ; and if A ¼ �N; we replace (vi) by
(vi)* Q0ðxÞ is increasing on ðk; bÞ:
We will simply just say that Q is weak convex on an interval I (without mentioning

the basepoints), if Q is weak convex on the interval I ¼ ½ða; bÞ�CD ða; bA %RÞ with
basepoints a and b:

Remark. Since k ¼ a (or k ¼ b) is allowed, it is also possible that Q0 is everywhere
positive (or negative) on I :

Notation 3. Throughout the article (in the above definition as well as in the

theorems) we agree on the following. Suppose that a function f ðxÞ—which is usually

defined by using Q0ðxÞ—is said to be increasing (or decreasing) on a set E; but it is

defined on a set FCE; where EWF has measure zero. Then by ‘‘f ðxÞ is increasing on

E’’ we mean that there exists a set GCF so that EWG has measure zero and f ðxÞ is

increasing on G: In other words, we do not require that f ðxÞ is increasing everywhere,
where it is defined. Similarly, if we write that, say, Q0ðxÞ40 on ðk;B�; we will mean

that there exists a set GCðk;B� so that ðk;B�WG has measure 0; Q0ðxÞ exists on G

and Q0ðxÞ40 on G: This agreement weakens the assumptions on the considered

functions in the theorems, but the given proofs are correct for this modified increasing/

decreasing definitions as well.

Some immediate consequences of the above definition are:

Proposition 4. Let ICR be an interval.

(a) If IC½A1;B1�C½A2;B2�C %R and Q is weak convex on I with basepoints A2 and B2;
then Q is also weak convex on I with basepoints A1 and B1:

(b) A function Q is convex on I if and only if Q is weak convex on I with basepoints

�N and þN:
(c) Hence every convex function on I ðC½A1;B1�Þ is also weak convex on I with

basepoints A1 and B1: In particular, every convex function on I is also weak convex

on I :
(d) If Q is absolutely continuous inside ð0;þNÞ and xQ0ðxÞ is increasing on ð0;þNÞ;

then Q is weak convex on ð0;þNÞ:

Thus ‘‘weak convexity’’ is a weaker condition than either the ‘‘Q is convex’’, or the
‘‘xQ0ðxÞ is increasing’’ conditions.

So the following theorem, which is our main theorem, is a generalization of
Theorem G to a larger class of functions.
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Theorem 5. Let us suppose that ða; bÞ is a subset of the support Sw and that Q is weak

convex on ða; bÞ with basepoints A;B satisfying SwC½A;B�: Then ða; bÞ-ZðwÞ ¼ |:
In particular, every function that vanishes outside ða; bÞ can be uniformly

approximated by weighted polynomials of the form wnPn:

Theorem 5 will follow from Theorem E, since we can generalize Theorem F as
follows:

Theorem 6. Let us suppose that ða; bÞ is a subset of the support Sw; and that Q is weak

convex on ða; bÞ with basepoints A;B satisfying SwC½A;B�: Then mw has a density v in

ða; bÞ which has a positive lower bound and smooth integral inside ða; bÞ:

Because of Proposition 4, in Theorem 5 we should choose A and B as close to
min Sw and max Sw (respectively) as possible to get the weakest assumption on Q:
Thus if the values of min Sw and max Sw are known, the best choices are A :¼ min Sw

and B :¼ max Sw: If, however, we have no information at all of the locations of
min Sw and max Sw; we must choose A :¼ �N and B :¼ þN to be sure that
SwC½A;B� is satisfied, and in this case Theorem 5 reduces to Theorem G: the
assumption on Q is to be convex.

Notice, however, that SwCS is always true, so the following corollary is a special
case of Theorem 5. The advantage of this corollary is that no information about
min Sw and max Sw is needed to check whether the weak convexity assumption on a
given Q is satisfied.

Corollary 7. Let ða; bÞCSw: If Q is weak convex on ða; bÞ with basepoints min S and

max S then ða; bÞ-ZðwÞ ¼ |:

In particular, when S is, say, lower bounded, and we write out the definition of
weak convexity, we gain Corollary 8.

Corollary 8. Let S ¼ ½A;þNÞ be a half-line and let ða; bÞCSw: Suppose that Q is

absolutely continuous inside ða; bÞ: If for some kA½a; b�

QðxÞ is decreasing and convex on ða; kÞ;

ðx � AÞQ0ðxÞ is non-negative and increasing on ðk; bÞ; ð2Þ

then ða; bÞ-ZðwÞ ¼ |:

Remark. Corollary 8 implies that if S ¼ ½0;þNÞ; and

xQ0ðxÞ is increasing on ða; bÞCSw; ð3Þ
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then ða; bÞ-ZðwÞ ¼ |: Eq. (3) is an often used criterion in logarithmic potential
theory (with the assumption that Q is differentiable). Notice that Corollary 8
assumes much less about Q; firstly Q does not have to be a differentiable just
absolutely continuous, secondly on the interval ða; kÞ (where Q0ðxÞp0), (2) is a
weaker assumption than (3).

Remark. One might ask whether we really need the SwC½A;B� assumption in
Theorem 5. To see that we do, consider the following example. Let

vðtÞ :¼ acw½2;2:01� þ ð1 � aÞc t2ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p tAð�1; 1Þ,½2; 2:01� ¼: S;

where w½2;2:01� is the characteristic function of the interval ½2; 2:01�; aAð0; 1Þ; and 0oc

is chosen so that
R

v ¼ 1: If we set

QðxÞ :¼
Z

logjx � tjvðtÞ dt; xAS;

then by Theorem I.3.3 [4], the extremal measure mw associated with w ¼ expð�QÞ has
density vðtÞ: We can see easily, that if a is close to 1; then on ½�1=2; 1=2� 0oQ0ðxÞ
and ð1 þ xÞQ0ðxÞ is increasing, however vðtÞBt2 as t-0; so by [2] (or [4, Theorem
VI.1.8]), 0AZðwÞ:

Now let us see some other theorems to demonstrate why the ‘‘weak convexity’’
is an appropriate generalization of both the ‘‘Q is convex’’, and the ‘‘xQ0ðxÞ
is increasing’’ conditions. The following theorems are generalizations of
some classical results (see [4, Sections IV.1 and IV.3]). We will also need to prove
Theorem 5.

Theorem 9. Let w ¼ expð�QÞ be an admissible (not necessarily continuous) weight on

R and suppose that Q is weak convex on the interval I with basepoints A;BA %R

satisfying SwC½A;B�: Then Sw-I is an interval.

Remark. A weight defined on S and the same weight defined on R which is zero on
RWS gives us the same equilibrium measure. Hence, this theorem is as general as if
R were replaced by S: (We avoided S in the formulation, because here we do not
suppose that S is regular with respect to the Dirichlet problem in CWS:)

Theorem 10. Let w ¼ expð�QÞ be an admissible (not necessarily continuous) weight on

R and suppose that Q is weak convex on the interval ½A;B� satisfying SwC½A;B�: Then

the support is a finite interval (by Theorem 9), say, Sw ¼ ½a; b� and the endpoints a; b

satisfy the following conditions:
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(i) If boB; then

1

p

Z b

a

ffiffiffiffiffiffiffiffiffiffiffi
x � a

b � x

r
Q0ðxÞ dx ¼ 1;

(ii) if a4A; then

1

p

Z b

a

ffiffiffiffiffiffiffiffiffiffiffi
b � x

x � a

r
Q0ðxÞ dx ¼ �1;

(iii) if b ¼ B; then

1

p

Z B

a

ffiffiffiffiffiffiffiffiffiffiffiffi
x � a

B � x

r
Q0ðxÞ dxp1;

(iv) if a ¼ A; then

1

p

Z b

A

ffiffiffiffiffiffiffiffiffiffiffiffi
b � x

x � A

r
Q0ðxÞ dxX� 1:

In the next theorem, we give an integral representation for the density of the
equilibrium measure mw: We emphasize that such integral representation was known
only in the case when xQ0ðxÞ is increasing so far (see [4, Theorem IV.3.2]), not even
in the case when Q is convex. Now Theorem 11 can also be applied to any convex Q

which has bounded derivative, since every convex function is also weak convex.
In the proof we will define vðtÞ almost everywhere, namely on a subset of ½�1; 1�

with full measure on which Q0ðtÞ exists and on which Q satisfies the conditions of
weak convexity. (See also Notation 3.) Note also that dmwðtÞ ¼ vðtÞ dt holds only for
a.e. tA½�1; 1� and not necessarily for all t for which we define vðtÞ:

Theorem 11. Let w ¼ expð�QÞ be an admissible weight on R such that min Sw ¼ �1;
max Sw ¼ 1: Suppose that Q is weak convex on ½�1; 1� and that Q0 is bounded on

½�1; 1�: Let kA½�1; 1� be a number such that

Q0ðxÞp0 xAð�1; kÞ;

Q0ðxÞX0 xAðk; 1Þ:

Then Sw ¼ ½�1; 1� (by Theorem 9) and the density of mw is dmwðtÞ ¼ vðtÞ dt a.e.

tA½�1; 1�; where for a.e. tAð�1; kÞ

vðtÞ :¼ 1 þ t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p
Z 1

�1

ð1 � sÞQ0ðsÞ � ð1 � tÞQ0ðtÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p 1 þ 1

p

Z 1

�1

ð1 � sÞQ0ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

� �
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and for a.e. tAðk; 1Þ:

vðtÞ :¼ 1 � t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p
Z 1

�1

ð1 þ sÞQ0ðsÞ � ð1 þ tÞQ0ðtÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p 1 � 1

p

Z 1

�1

ð1 þ sÞQ0ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

� �
:

3. Examples

The following external fields are weak convex on the whole S: (We just list
external fields which are weak convex, but not convex.)

(1) QðxÞ :¼ bxa; a; b40 on S :¼ ½0;þNÞ: (now wðxÞ ¼ expð�bxaÞ).
(2) QðxÞ :¼ b lnðx þ aÞ; a; b40 on S :¼ ½0;NÞ: (now wðxÞ ¼ 1=ðx þ aÞb).
(3) QðxÞ :¼ 0 if xA½0; 1� and QðxÞ :¼ ln x if xX1 on S :¼ ½0;NÞ:
(4) QðxÞ :¼ b lnð1 þ jxjÞ (so wðxÞ ¼ 1=ð1 þ jxjÞb) on S :¼ ½�1; 1�: More generally, if

a1; a2X1; b1; b2X0; gAð�1; 1Þ and

wðxÞ :¼

1

ða1 � xÞb1
if xA½�1; g�;

1

ðx þ a2Þb2
if xAðg; 1�

8>>><
>>>:

is continuous on ½�1; 1�; then the corresponding QðxÞ ¼ �ln wðxÞ external field
is weak convex on ½�1; 1�:

(5) QðxÞ :¼ 1=ð�ln xÞa; a40 on S :¼ ½0; 1�:

By Theorem 9, in these examples the support of the extremal measure associated
with w is a finite interval: ½a; b�: So by Theorem 5 (and Theorem C), a continuous
function f can be uniformly approximated by weighted polynomials of the form
wnPn if and only if f vanishes outside the support ½a; b�: In some cases with the help
of Theorem 10 we can get the actual values of a and b:

Finally, here is an example to demonstrate the local usage of Theorem 5.

(6) Consider QðxÞ :¼ sin x on S :¼ ½0; 2�: It is not a weak convex function on ½0; 2�;
however sin x is weak convex on ½0; 0:86� with basepoints 0 and 2: Thus by
Theorem 9, J :¼ Sw-½0; 0:86� is a closed interval. So by Theorem 5, any
continuous function which vanishes outside J can be uniformly approximated
by weighted polynomials of the form wnPn; where wðxÞ ¼ expð�sin xÞ: Notice
that it is no longer an if and only if statement, secondly we have to make sure
that J is not an empty set, since in this case the statement is meaningless.
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3.1. Proofs

First we give a sufficient condition for interchanging differentiation and
integration in a parametric integral, which we will need later. This problem is
discussed in many calculus books, but here we do not assume that the integrand
Fðx; tÞ is a differentiable function of x (when t is fixed), we merely assume absolute
continuity. Our belief is that this more general problem should be discussed in books
dealing with absolutely continuous functions, in the section where they discuss other
classical problems like integration by substitution and integration by parts for
absolutely continuous functions. The condition and the proof we give matches the
simplicity and usefulness of these other two classical theorems.

Definition 12. Let f be an integrable function. We say that a point x0AR is a weak
Lebesgue point of f ; if

lim
x-x0

1

x � x0

Z x

x0

f ðtÞ dt ¼ f ðx0Þ:

We say that a point x0AR is a Lebesgue point of f ; if

lim
x-x0

1

x � x0

Z x

x0

jf ðtÞ � f ðx0Þj dt ¼ 0:

Clearly every Lebesgue point is also a weak Lebesgue point. It is known that for an
integrable function almost every point is a Lebesgue point, therefore almost every
point is a weak Lebesgue point.

Lemma 13. Let F : ½0; 1� 
 ½0; 1�-R be a function so that x/Fðx; t0Þ is absolutely

continuous for a.e. t0A½0; 1�: Thus for a.e. t0A½0; 1�; F1ðx; t0Þ :¼ @
@x

Fðx; t0Þ exists for

a.e. xA½0; 1�: Suppose further that F1ðx; tÞ is measurable on the product space ½0; 1� 

½0; 1�: Let Vðt0Þ :¼

R 1

0 jF1ðx; t0Þj dx (a.e. t0A½0; 1�) be the total variation of F1ðx; t0Þ
and fðxÞ :¼

R 1

0 F1ðx; tÞ dt (a.e. xA½0; 1�).
If

R 1

0 VðtÞ dtoN and x0A½0; 1� is a weak Lebesgue point of f; then

d

dx

Z 1

0

Fðx; tÞ dt

� �
ðx0Þ ¼

Z 1

0

F1ðx0; tÞ dt:

Proof. Using the absolute continuity assumption and the Fubini theorem we get

1

x1 � x0

Z 1

0

ðFðx1; tÞ � Fðx0; tÞÞ dt ¼ 1

x1 � x0

Z 1

0

Z x1

x0

F1ðx; tÞ dx dt

¼ 1

x1 � x0

Z x1

x0

fðxÞ dx:

D. Benko / Journal of Approximation Theory 120 (2003) 153–182162



(We could change the order of integration since
R 1

0

R 1

0 jF1ðx; tÞj dx dtoþN:) But

x0 is a weak Lebesgue point of f; so

lim
x1-x0

1

x1 � x0

Z x1

x0

fðxÞ dx ¼ fðx0Þ ¼
Z 1

0

F1ðx0; tÞ dt; ð4Þ

which proves the statement. &

Corollary 14. If x/Fðx; t0Þ is absolutely continuous for a.e. t0A½0; 1� and

F1ðx; tÞAL1ð½0; 1� 
 ½0; 1�Þ; then

d

dx

Z 1

0

Fðx; tÞ dt

� �
ðx0Þ ¼

Z 1

0

F1ðx0; tÞ dt

holds for a.e. x0A½0; 1�:

Proof.
R 1

0 jfðxÞj dxp
R 1

0

R 1

0 jF1ðx; tÞj dt dxoN; so fAL1½0; 1�: Thus, almost every

point of ½0; 1� is a weak Lebesgue point of f and the statement follows by applying
Lemma 13. &

Proof of Theorem 9. Since Sw is bounded, if any of A and B is infinite we can replace
them by a finite value so that SwC½A;B� still holds (see also Proposition 4). So we
can assume that A and B are finite.

Suppose indirectly that there exist a; bASw-I ; aob: ða; bÞ-Sw ¼ |:
Let m :¼ mw denote the equilibrium measure associated with w and

UðxÞ :¼ UmðxÞ :¼
Z
R

ln
1

jx � tj dmðtÞ

be the logarithmic potential function of m: Clearly UðxÞ is absolutely continuous on
every closed subset of ða; bÞ; and because of the Lebesgue monotone convergence
theorem, UðxÞ is continuous on ½a; b�: (Indeed, we may assume that jB � Ajp1; so
lnð1=jx � tjÞ40 x; tA½A;B�: We split the above integral to two integrals, one with
measure mjð�N;a� and the other with measure mj½b;þNÞ: Since UðaÞ and UðbÞ are finite

from (1), we can apply Lebesgue’s theorem to the two integrals.) So UðxÞ is
absolutely continuous on ½a; b�:

Since
R
R

1
x�t

dmðtÞ is continuous in ða; bÞ; by Lemma 13,

U 0ðxÞ ¼
Z �1

x � t
dmðtÞ; xAða; bÞ:

Notice that both �ðB�xÞ
x�t

and �ðx�AÞ
x�t

are strictly increasing functions of xAða; bÞ for

any fixed tAðA; a�,½b;BÞ and they are increasing functions if t ¼ A or t ¼ B: We
know that mðfAgÞ ¼ mðfBgÞ ¼ 0 (because m has finite logarithmic energy) and since
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SwC½A;B� we get that both ðB � xÞU 0ðxÞ and ðx � AÞU 0ðxÞ are strictly increasing on
ða; bÞ:

Let RðxÞ :¼ UðxÞ þ QðxÞ and let kA½A;B� be the number from the definition of
weak convexity, that is

Q0ðxÞp 0 xAðA; kÞ-I ;

Q0ðxÞX 0 xAðk;BÞ-I : ð5Þ

Let E :¼ ðB � kÞ=ðk� AÞ if kaA and E :¼ 1 otherwise. Consider the function

f ðxÞ :¼
ðB � xÞ½U 0ðxÞ þ Q0ðxÞ� if xAðA; kÞ-ða; bÞ
Eðx � AÞ½U 0ðxÞ þ Q0ðxÞ� if xAðk;BÞ-ða; bÞ:

(

Since U 0 is continuous on ða; bÞ; from (5) it follows that f is a strictly increasing
function on the whole ða; bÞ: Therefore, we cannot find numbers x1; x2AI ; x1ox2

for which both 0oR0ðx1Þ and 04R0ðx2Þ hold.
From Theorem A we have RðxÞ :¼ UðxÞ þ QðxÞXFw xAða; bÞ and

RðaÞ;RðbÞpFw: It is impossible that RðxÞ ¼ Fw for all yAða; bÞ; because then f ðxÞ
would not be strictly increasing. So there is a yAða; bÞ: FwoRðyÞ: If we also use the
limit condition of weak convexity (Definition 2), we get

0oRðyÞ � FwpRðyÞ � RðaÞpRðyÞ � lim
x-aþ0

RðxÞ ¼ lim
x-aþ0

Z y

x

R0ðtÞ dt;

which implies the existence of x1Aða; yÞ: 0oR0ðx1Þ: Similarly

04Fw � RðyÞXRðbÞ � RðyÞX lim
x-b�0

RðxÞ � RðyÞ

¼ lim
x-b�0

Z x

y

R0ðtÞ dt;

so there is an x2Aðy; bÞ: 04R0ðx2Þ: This is a contradiction. &

Proof of Theorem 10. As in the proof of Theorem 9, we can assume again that A and
B are finite.

We shall only prove (i) and (iii), the other two follow by the symmetry of the
statement.

If KCR is a compact set, we define

FðKÞ :¼ log capðKÞ �
Z

Q doK

where oK is the equilibrium measure of K : This is called the F -functional for w and
from [4, Theorem IV.1.5], we know that

FðSwÞ ¼ Fð½a; b�Þ ¼ max
a;b

Fð½a; b�Þ; ð6Þ
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where the maximum is taken over all nondegenerate intervals ½a; b�C½A;B�: Now
from [4, Example I.3.5] we have

cap½a; b� ¼ b� a
4

; do½a;b� ¼
dx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � aÞðb� xÞ

p ; xA½a; b�

and so

Fð½a; b�Þ ¼ log
b� a

4
� 1

p

Z b

a

QðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � aÞðb� xÞ

p dx:

On making the change of variable

x ¼ bþ a

2
þ b� a

2
cos y; 0pypp;

we can rewrite Fð½a; b�Þ as

Fð½a; b�Þ ¼ log
b� a

4
� 1

p

Z p

0

Q
bþ a

2
þ b� a

2
cos y


 �
dy:

Using (1) and the lower semi-continuity of Q it follows that Q is bounded on ½a; b�:
Thus from the Lebesgue dominated convergence theorem b/Fð½a; b�Þ is a
continuous function on ½a; b�: Interchanging differentiation and integration,
we get

@

@b
Fð½a; b�Þ ¼ 1

b� a
� 1

2p

Z p

0

Q0 bþ a

2
þ b� a

2
cos y


 �

 ð1 þ cos yÞ dy bAða;BÞ: ð7Þ

To verify the differentiation, we will show that

hðbÞ :¼
Z p

0

Q0 bþ a

2
þ b� a

2
cos y


 �
ð1 þ cos yÞ dy

¼ 2

b� a

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffi
x � a

b� x

r
Q0ðxÞ dx

is a continuous real function of b on ða;BÞ and

b/
Z p

0

Q0 bþ a

2
þ b� a

2
cos y


 �
ð1 þ cos yÞ

����
���� dy ð8Þ
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is bounded inside ða;BÞ (see Lemma 13). We will also see that limb-B� hðbÞ exists

and equal to hðBÞ (infinity value is allowed). Thus from the Lagrange mean value
theorem we can conclude that (7) holds on ða;B� in the case when b ¼ B: Now if

boB; we gain (i) immediately from (7), since by (6) @
@b Fð½a; b�Þ has to be zero at

b ¼ b: On the other hand if b ¼ B; we gain (iii) by the same logic, since by (6) the left

derivative has to be @
@b Fð½a; b�Þjb¼Bp0:

The boundedness of (8) can be proved similarly as the finiteness of hðbÞ on ða;BÞ
(see below). Thus it remained to prove that hðbÞ is continuous on ða;B� in the
extended sense. Let k be a number so that

Q0ðxÞp 0 xA½A; kÞ

Q0ðxÞX 0 xAðk;B�:

First we show that hðbÞ is a finite valued function on ða;BÞ: So let bAða;BÞ: Notice
that because of our monotonicity assumptions, Q0 is bounded inside ðA;BÞ: So hðbÞ
is clearly finite if Aoa: If, however, a ¼ A; we have to distinguish two cases:

* If Aok; thenZ k

A

Q0ðxÞ dx ¼ lim
e-0þ

Z k

Aþe
Q0ðxÞ dx

¼ lim
e-0þ

ðQðkÞ � QðA þ eÞÞ4�N;

since Q is bounded on ½a; b�:
* If A ¼ k; then

hðbÞ ¼ 2

b� a

Z b

A

ðx � AÞQ0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � AÞðb� xÞ

p dxoþN;

since ðx � AÞQ0ðxÞ is a (non-negative) increasing function.

These show that hðbÞ is finite in both cases.

We are done, if we can show that for any uA½A;BÞ and for any fAL1½A;B� non-
negative decreasing function,Z b

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dx

is a continuous function of b on ðu;B�; while if gAL1½A;B� is any non-negative
increasing function, thenZ b

u

gðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðx � AÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dx ð9Þ

is continuous on ðu;B� and continuous on ½u;B�; if Aou:
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Indeed, if aobpk; then we use

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffi
x � a

b� x

r
Q0ðxÞ dx ¼ �

Z b

a

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dx;

where f ðxÞ :¼ �ðB � xÞQ0ðxÞ is decreasing on ½A; kÞ; while if aokpbpB or
kpaobpB; we use

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffi
x � a

b� x

r
Q0ðxÞ dx ¼

Z k

a

ffiffiffiffiffiffiffiffiffiffiffiffi
x � a

b� x

r
Q0ðxÞ dx þ

Z b

k

gðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðx � AÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dx

or

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffi
x � a

b� x

r
Q0ðxÞ dx ¼

Z b

a

gðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðx � AÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dx;

respectively, where gðxÞ :¼ ðx � AÞQ0ðxÞ is increasing on ðk;B�: HereZ k

a

ffiffiffiffiffiffiffiffiffiffiffiffi
x � a

b� x

r
Q0ðxÞ dx

is clearly a continuous function of b on ½k;B� by the Lebesgue monotone
convergence theorem.

Consider

h1ðbÞ :¼
Z b

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dx

¼ b� u

2

Z p

0

f ðbþu
2

þ b�u
2

cos yÞð1 þ cos yÞ
ðB � ðbþu

2
þ b�u

2
cos yÞÞ

dy:

If b-b0Aðu;BÞ; the integrands at the right-hand side have an integrable majorant

ðCf ðb1þu
2

þ b1�u
2

cos yÞ; where uob1ob0), so by the Lebesgue dominated convergence

theorem

lim
b-b0

h1ðbÞ ¼
b0 � u

2

Z p

0

limb-b0
f ðbþu

2
þ b�u

2
cos yÞð1 þ cos yÞ

ðB � ðb0þu
2

þ b0�u
2

cos yÞÞ
dy:

But f is continuous almost everywhere and arccos x is an absolutely continuous

function, thus for almost every yA½0; p� we have limb-b0
f ðbþu

2
þ b�u

2
cos yÞ ¼

f ðb0þu
2

þ b0�u
2

cos yÞ: This means that h1ðbÞ is continuous at b0:

Now let b0 :¼ B and we will prove that h1ðbÞ is continuous at B from the left in the
extended sense (i.e., h1ðBÞ ¼ þN is allowed). We may suppose right away that
h1ðBÞoþN; since if h1ðBÞ ¼ þN; then limb-B� h1ðbÞ ¼ þN is clear.
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Let 0oD be any (big) number and e :¼ eðbÞ :¼ B � b: Consider

h1ðbÞ ¼
Z b

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dx ¼
Z b�De

u

þ
Z b

b�De
: ð10Þ

Now

Z b�De

u

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � ðb� DeÞ
b� ðb� DeÞ

s Z b�De

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ1:5
dx

p

ffiffiffiffiffiffiffiffiffiffiffiffi
D þ 1

D

r Z B

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ1:5
dx: ð11Þ

We will show that the second term in (10),
R b
b�De is going to 0; as b-B�: Since 0oD

was arbitrary, this together with (11) imply that

lim sup
b-B�

h1ðbÞph1ðBÞ: ð12Þ

NowZ b

b�De

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dxpC
f ðb� DeÞ

B � b

Z b

b�De

1ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dx

pCD

f ðb� DeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � ðb� DeÞ

p ; ð13Þ

where CD depends on D; but not on b: As b-B�; e ¼ eðbÞ-0; so to prove that the
right-hand side of (13) is going to 0; we have to show that

lim
b-B�

f ðbÞffiffiffiffiffiffiffiffiffiffiffiffi
B � b

p ¼ 0:

This latter limit follows from

h1ðBÞ ¼
Z B

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ1:5
dxoþN:

Indeed, with a simplified notation, we claim that

lim
e-0þ

f ðeÞffiffi
e

p ¼ 0 ð14Þ

follows from
R 1

0 f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
d � x

p
=x1:5 dxoN (where f is any non-negative increasing

function and 1pd is arbitrary).
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Notice that for any small 0oe;

Z 2e

e

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
d � x

p

x1:5
dxXC

f ð
ffiffi
e

p
Þffiffi

e
p ;

so if we choose any e14e24e34?40 with the constraint that ½e1; 2e1�; ½e2; 2e2�;y
are disjoint intervals, then

N4
Z 1

0

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
d � x

p

x1:5
dxX

XN
i¼1

Z 2ei

ei

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
d � x

p

x1:5
dxXC

XN
i¼1

f ðeiÞffiffiffiffi
ei

p ;

which implies that limðf ðeiÞ=
ffiffiffiffi
ei

p Þ ¼ 0: From this fact (14) follows easily.

So (12) is proved. To get

lim inf
b-B�

h1ðbÞXh1ðBÞ

we just have to look atZ b

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
b� x

p dxX

Z b

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ1:5
dx

-

Z B

u

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x � a

p

ðB � xÞ1:5
dx as b-B�:

Therefore the continuity of h1ðbÞ at B is established.
The continuity of (9) on ðu;B� follows with the same argument. Finally, if Aou;

then gðxÞ and x � A are bounded in a neighborhood of u; so (9) tends to 0 as b tends
to u from the left, hence (9) is continuous on ½u;B�:

The proof of Theorem 10 is now complete. &

Definition 15. Let fAL1½a; b�: For xAða; bÞ the Cauchy principal value integral is
defined as

PV

Z b

a

f ðsÞ
s � x

:¼ lim
e-0

Z x�e

a

f ðsÞ
s � x

ds þ
Z b

xþe

f ðsÞ
s � x

ds


 �

if this limit exists. If xeða; bÞ; the PV integral is simply an ordinary Lebesgue
integral (which clearly exists if xe½a; b�):

PV

Z b

a

f ðsÞ
s � x

ds :¼
Z b

a

f ðsÞ
s � x

ds:

A well-known theorem states that for almost every x in ½�1; 1� the above principal
value integral exists and finite.
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Proof of Theorem 11

Lemma 16. Let w ¼ expð�QÞ be an admissible weight on R so that Sw ¼ ½�1; 1�:
Suppose that Q is absolutely continuous on ½�1; 1� and that Q0 (which exists a.e. in

½�1; 1�) is bounded in ½�1; 1�: Let

vðtÞ :¼ 1

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p PV

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p
Q0ðsÞ

s � t
ds

þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p ; tA½�1; 1�: ð15Þ

If 0pvðtÞ a:e: tA½�1; 1�; then dmwðtÞ ¼ vðtÞ dt a:e: tA½�1; 1�:

Proof. Let w1ðxÞ ¼ expð�Q1ðxÞÞ be and admissible weight on R such that Q1 is
absolutely continuous on ½0; 1� and Q0

1 is bounded on ½0; 1�: Consider the expression

gðtÞ :¼ 1

p2

ffiffiffiffiffiffiffiffiffiffi
1 � t

t

r
PV

Z 1

0

sQ0
1ðsÞ

ðs � tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 � sÞ

p ds

þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 � tÞ

p 1 � 1

p

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffi
s

1 � s

r
Q0

1ðsÞ ds


 �
:

Exactly as in the proof of Theorem IV.3.2. in [4], if we set f ðxÞ ¼ Q1ðx2Þ=2 and

apply Theorem IV.3.1 in [4], we get that
R 1

0
g ¼ 1 and

R 1

0
ln jx � tjgðtÞ dt ¼ Q1ðxÞ þ

C with some constant C for all xAð�1; 1Þ: ([4, Theorem IV.3.1], is originated from
[3]. Note that in the formulation of this theorem there is a missing hypothesis: f

should be absolutely continuous on ½�1; 1�:) If we transfer this statement from ½0; 1�
to ½�1; 1� by a linear transformation, we get the following:

Let

vðtÞ :¼ 1 � t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p PV

Z 1

�1

ð1 þ sÞQ0ðsÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p 1 � 1

p

Z 1

�1

ð1 þ sÞQ0ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds


 �
tAð�1; 1Þ;

then
R 1

�1 v ¼ 1; andZ 1

�1

ln jx � tjvðtÞ dt ¼ QðxÞ þ C xAð�1; 1Þ ð16Þ

with some constant C: We assumed that 0pvðtÞ almost everywhere and therefore by
Theorem I.3.3 in [4], dmwðtÞ ¼ vðtÞ dt a.e. tA½�1; 1� as we stated. (Because of (16) and

D. Benko / Journal of Approximation Theory 120 (2003) 153–182170



the boundedness of Q on ½�1; 1�; the finite logarithmic energy condition of I.3.3 is
satisfied.)

To get (15) we just have to combine the two integrals above in the representation
of vðtÞ: &

Now we can prove Theorem 11 as follows:
Let rA½�1; 1� be arbitrary. We will find another form of the function v in Lemma

16. We will make use of the identity (see [4, Formula IV (3.20)])

PV

Z 1

�1

1

ðs � tÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds ¼ 0 tAð�1; 1Þ: Now ð17Þ

vðtÞ ¼ 1

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p PV

Z r

�1

ð1 � s2ÞQ0ðsÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

"

þ PV

Z 1

r

ð1 � s2ÞQ0ðsÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

#
þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p

¼ 1

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p PV

Z r

�1

½ð1 þ tÞð1 � sÞ þ ðs � tÞð1 � sÞ�Q0ðsÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

"

þ PV

Z 1

r

½ð1 � tÞð1 þ sÞ � ðs � tÞð1 þ sÞ�Q0ðsÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

#
þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p ;

so

vðtÞ ¼ 1 þ t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p PV

Z r

�1

ð1 � sÞQ0ðsÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

þ 1 � t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p PV

Z 1

r

ð1 þ sÞQ0ðsÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p

þ 1

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p
Z r

�1

ð1 � sÞQ0ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds �
Z 1

r

ð1 þ sÞQ0ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

� �
: ð18Þ

Let kA½�1; 1� be a number so that

Q0ðxÞp0 xAð�1; kÞ

Q0ðxÞX0 xAðk; 1Þ:
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Let tAð�1;kÞ be a value for which Q0ðtÞ exists. Setting r :¼ 1 and using (17), we get

vðtÞ ¼ 1 þ t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p PV

Z 1

�1

ð1 � sÞQ0ðsÞ � ð1 � tÞQ0ðtÞ
ðs � tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p 1 þ 1

p

Z 1

�1

ð1 � sÞQ0ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

� �
:

By Theorem 10 the second term is non-negative.
From the assumptions of Theorem 11, clearly

ð1 � sÞQ0ðsÞ � ð1 � tÞQ0ðtÞ
s � t

is non-negative, when sAð�1; kÞ; and it is also non-negative, when sAðk; 1Þ: (For the
latter, consider the sign of Q0:)

Thus on the set ftAð�1; kÞ: Q0ðtÞ existsg we have 0pvðtÞ and vðtÞ has the form as
given in Theorem 11. If in (18) we set r :¼ �1; we can see the same way that on the
set ftAðk; 1Þ: Q0ðtÞ existsg we have 0pvðtÞ and vðtÞ has the form as given in
Theorem 11.

So 0pvðtÞ a:e: tA½�1; 1�; and dmwðtÞ ¼ vðtÞ dt follows from the previous
lemma. &

Proof of Theorem 6. Since w is absolutely continuous inside ða; bÞ and dwðxÞ=dx ¼
�wðxÞQ0ðxÞ is in every Lp; 1opoN inside ða; bÞ (because Q0 is bounded inside
ða; bÞ), it follows from [4, Theorem IV.2.2] that mQ is absolutely continuous and its

derivative is in every Lp inside ða; bÞ: We shall denote the density dmQðtÞ=dt by vðtÞ:

Now we prove the first part of Theorem 6, that is:

Lemma 17. If ða; bÞCSw and Q is weak convex on ða; bÞ with basepoints min Sw and

max Sw; then v has a positive lower bound inside ða; bÞ:

Proof. The same argument works as in the proof of Theorem F (see [6]), since now
Theorem 9 is at our disposal.

For any positive l; clearly lQ is also weak convex on ða; bÞ with basepoints min Sw

and max Sw; so by Theorem 9, Swl-ða; bÞ is an interval with endpoints al; bl: We
show that if 1ol is sufficiently close to 1; then al is sufficiently close to a and bl is
sufficiently close to b:

It is enough to prove that in any neighborhood of any point x0 of ða; bÞ there is a
point x1 lying in some ðal; blÞ; 1ol: Indeed, then this property and the decreasing
character of the support S; namely Swr1CSwr2 for r14r2 (see [4, Theorem IV.4.1])
imply our claim.
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Now we use the following characterization of points in the support Sw: x0ASw if
and only if for every neighborhood B of x0; there is an n and a polynomial Pn of
degree at most n such that wnjPnj attains its maximum in S at some point of B-S
and nowhere outside B (see [4, Corollary IV.1.4]). By continuity then the same is true

of wlnjPnj for some 1ol sufficiently close to 1: But jjwlnPnjjS ¼ jjwlnPnjjS
wl
: (CWS is

a regular domain, so for any continuous w we have jjwnPnjjS ¼ jjwnPnjjSw
; see [4,

Corollary III.2.6]) Therefore, B-Swla| and so in B there is an x1 lying in ðal; blÞ as
we claimed above.

Thus, if ½a0; b0� is any subinterval of ða; bÞ; there is a l41 such that ½a0; b0� is in the
support of mwl : Now we invoke the inequality ([4, Theorem IV.4.9]):

mwjS
wl
X

1

l
mwl þ 1 � 1

l


 �
oSw

jS
wl
;

where oSw
denotes the equilibrium measure of the set Sw (which is nothing else than

the equilibrium measure corresponding to the identically zero field on Sw). Since
½a0; b0� is part of Swl and the equilibrium measure oSw

has a positive and continuous
density in ða0; b0Þ; it follows that the density of mw has a positive lower bound inside
ða0; b0Þ: Here, ½a0; b0�Cða; bÞ was arbitrary, so the proof of the lemma is
complete. &

It remained to prove the second part of Theorem 6. To do this, first we need the
concept of the balayage measure. Let n be a measure on the real line and K be an
interval. There is a unique measure %n supported on K such that the total mass of %n
equals the total mass of n and for some constant d we have U %nðxÞ ¼ U nðxÞ þ d for
every xAK : %n is called the balayage of n onto K : Actually, the balayage process
moves (sweeps) only the part of n lying outside K ; i.e.,

%n ¼ njK þ njRWK : ð19Þ

For the second measure on the right there is a closed form (see [4, Formula II.4.47]),
which shows that by taking balayage onto K ; we add to the portion of n lying in K a
measure with a continuous density.

The relevance of the balayage to extremal fields is explained by the following: if
KCSw is a closed interval and w1 is the restriction of w onto K (i.e., the weight w1 is
considered on K), then the equilibrium measure mw1

associated with w1 is the

balayage of mw onto K (see [4, Theorem IV.1.6(e)]).
Now we will make some elementary observations regarding functions with

‘‘smooth integral’’. We leave the proofs of the first two propositions to the reader.
We say that a family of functions has uniformly smooth integrals, if the d in the

definition of a function with smooth integral is independent of the function in the
family. (See also Definition D.)

Proposition 18. Non-negative linear combination of finitely many functions with

smooth integrals is again with smooth integral. More generally, if n is a finite positive

Borel measure on BCR and fvsðxÞ: sABg is a family of functions with uniformly smooth
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integral on ½a; b� for which s/vsðxÞ is a measureable function for a.e. xA½a; b�; then

vðxÞ :¼
Z

B

vsðxÞ dnðsÞ

has also smooth integral on ½a; b�:

The proof of the next simple statement can be found in [6].

Proposition 19. If v1 has smooth integral, 0pv2 is continuous, and v1 � v2 has a

positive lower bound, then v1 � v2 has also smooth integral.

Proposition 20. The function logð1=jxjÞ has smooth integral on any interval ½�a; a�;
where 0oao1:

Proof. Let

Rb;t :¼
R b

b�t �ln jxj dxR bþt
b

�ln jxj dx
;

where �apb � tob þ tpa: We have to show that for any 0oe there is a 0od such
that jRb;t � 1jpe whenever tpd:

By symmetry we can suppose that 0pb:
Suppose first that bp2t: Obviously,

1pRb;tp

R t
2�t
2
�ln jxj dxR 3t

2t �ln jxj dx
¼

tð1 � ln t
2
Þ

3tð1 � lnð3tÞÞ � 2tð1 � lnð2tÞÞ

¼
1 � ln t

2

1 þ lnð16=216Þ � ln t
2

;

which tends to 1 as t-0:
Therefore from now on we can suppose that 2tpb: Again 1pRb;t: Let us suppose

indirectly that for some 0oe there are positive sequences bn and tn such that ½bn �
tn; bn þ tn�C½tn; a�; tn-0; and 1 þ epRbn;tn

:
Since tn=bn is bounded, we may select a converging subsequence from it, so we can

assume that tn=bn-r; where rA½0; 1
2
�: By direct calculation

Rbn;tn
¼ tn � bn ln bn þ ðbn � tnÞ lnðbn � tnÞ
tn þ bn ln bn � ðbn þ tnÞ lnðbn þ tnÞ

¼
tnð1 � ln bnÞ þ ðbn � tnÞ lnð1 � tn

bn
Þ

tnð1 � ln bnÞ � ðbn þ tnÞ lnð1 þ tn

bn
Þ

¼
1 �

1þbn

tn
lnð1�tn

bn
Þ�lnð1�tn

bn
Þ

ln bn

1 �
1�bn

tn
lnð1þtn

bn
Þ�lnð1þtn

bn
Þ

ln bn

: ð20Þ

If 0or; then bn-0 necessarily, thus ln bn-�N and the limit of (20) is 1.
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If, however, r ¼ 0; then we use the elementary limits limg-0
1
g lnð1 � gÞ ¼ �1 and

limg-0
1
g lnð1 þ gÞ ¼ 1: Thus limð1 þ bn

tn
lnð1 � tn

bn
Þ � lnð1 � tn

bn
ÞÞ ¼ 0 and limð1 �

bn

tn
lnð1 þ tn

bn
Þ � lnð1 þ tn

bn
ÞÞ ¼ 0 (as n-N), which imply that the limit of (20) is again

1. This contradiction proves the lemma. &

After these preparations we start proving the second part of Theorem 6, that is:

Theorem 21. If ða; bÞCSw and Q is weak convex on ða; bÞ with basepoints min Sw and

max Sw; then v has a smooth integral inside ða; bÞ:

Proof. Let us restrict w to ½a; b�: Based on what we said about the balayage and
smooth integral, it is enough to prove that the equilibrium measure associated with
this restricted weight function has a density v1 which has smooth integral inside
ða; bÞ: Indeed, by (19), v ¼ v1 � v2; where 0pv2 is continuous and v has a positive
lower bound inside ða; bÞ; so if v1 has smooth integral inside ða; bÞ; so does v:

Therefore from now on we will assume that w is defined on ½a; b�; i.e., S ¼ ½a; b�:
We will continue to use v for the density of the equilibrium measure associated with
this restricted w: Furthermore, because of the balayage process, the new support Sw

is the interval ½a; b� (so v is defined on ½a; b�). As a result of this, we will be able to
apply Theorem 11 to get a formula for v: (We remark that the hypothesis of Theorem
21 is still satisfied, since Q is weak convex on ða; bÞ by Proposition 4.)

Now we will prove three lemmas:

Lemma 22. Let fAL1½c; d� be a function and suppose that f ðsÞ is Lipschitz continuous

on ½c; cþd
2
� with Lipschitz constant L: Let vnðtÞ :¼

R d

c
1

s�t
f ðsÞ ds ðtocÞ: Then for every

tAðc � minðexp �4

ðd�cÞ2;
1
e
Þ; cÞ

vnðtÞ
�lnðc � tÞ � f ðcÞ
����

����pð1 þ d�c
2
ÞðL þ jf ðcÞjÞ þ jjf jjL1½c;d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�lnðc � tÞ
p :

Proof. Let tAðc � minðexp �4

ðd�cÞ2;
1
e
Þ; cÞ: Then c � to1

e
and we can define

t :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�lnðc � tÞ

s
:

Because of the Lipschitz continuity of f ; jf ðsÞ � f ðcÞjpLðs � cÞ for all sA½c; ðc þ
dÞ=2�: If we divide by s � t and integrate, we getZ cþt

c

1

s � t
f ðsÞ ds �

Z cþt

c

1

s � t
f ðcÞ ds

����
����

pL

Z cþt

c

s � c

s � t
dspLt

Z cþt

c

1

s � t
ds:

(Note that from tAðc � minðexp �4

ðd�cÞ2;
1
e
Þ; cÞ it follows that c þ tpðc þ dÞ=2:)
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This means that

vnðtÞ �
Z d

cþt

1

s � t
f ðsÞ ds � ðlnðc þ t� tÞ � lnðc � tÞÞf ðcÞ

����
����

pLtðlnðc þ t� tÞ � lnðc � tÞÞ;

and here j
R d

cþt jpjjf jjL1=t: By the triangle inequality we get

vnðtÞ
�lnðc � tÞ � f ðcÞ
����

����pLt 1 þ lnðc þ t� tÞ
�lnðc � tÞ


 �

þ jlnðc þ t� tÞj
�lnðc � tÞ jf ðcÞj þ tjjf jjL1 :

Notice that if lnðc þ t� tÞX0; then

lnððc � tÞ þ tÞpln 1 þ d � c

2


 �
p

d � c

2

because as we mentioned, tpðd � cÞ=2: If however lnðc þ t� tÞo0; then

jlnðc þ t� tÞj ¼ �lnððc � tÞ þ tÞp� lnðtÞp1

t
:

Therefore in all cases

vnðtÞ
�lnðc � tÞ � f ðcÞ
����

����
pLt 1 þ ðd � cÞ=2

�lnðc � tÞ


 �
þ 1=t

�lnðc � tÞ þ
ðd � cÞ=2
�lnðc � tÞ


 �
jf ðcÞj þ tjjf jjL1 :

Since from tXc � 1
e
we have t2ptp1; the statement follows immediately. &

Lemma 23. Let �1oaobo1 and let aðtÞ; bðtÞ; f ðtÞ; gðtÞ be positive continuous

functions on ð�1; 1Þ so that f ðtÞ; gðtÞAL1½�1; 1�: Suppose also that f ðsÞ is Lipschitz

continuous on ½a; bþ1
2
� and gðsÞ is Lipschitz continuous on ½a�1

2
; b�: Define

fcðtÞ :¼
aðtÞ

R 1

c
1

s�t
f ðsÞ ds; tAð�1; cÞ;

0; tAðc; 1Þ

(

ccðtÞ :¼
0; tAð�1; cÞ;
bðtÞ

R c

�1
1

t�s
gðsÞ ds; tAðc; 1Þ

(
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and

rcðtÞ :¼ fcðtÞ þ ccðtÞ; F :¼ frcðtÞ : cA½a; b�g:

If aðcÞf ðcÞ ¼ bðcÞgðcÞ for all cA½a; b�; then the family of function F has uniformly

smooth integral on ½a; b�:

Proof. In this proof let us agree on the following (unusual) notation: we say that a
function (of t; c; I and J) is oð1Þ if it is uniformly tending to 0 on its specified domain
as e-0: This domain can depend on e: For example since aðtÞ is a continuous
function, we may write: aðtÞ ¼ aðcÞ þ oð1Þ for tA½c; c þ e� as e-0:

Let I :¼ ½u � e; u� and J :¼ ½u; u þ e� be two adjacent intervals of ½a; b� with 0oe:
Define

ncðI ; JÞ :¼
R

I
rcðtÞ dtR

J
rcðtÞ dt

:

To be able to use Lemma 22, we suppose that eominð14; exp �4

ð1�bÞ2Þ: Now d :¼ffiffi
e

p
� 2e40:

Let us fix an arbitrary cA½a; b� and let d :¼ maxðc � d; aÞ and e :¼ minðc þ d; bÞ:
Case 1: Suppose that ðI,JÞC½a; d�:
The function

hðtÞ :¼
Z 1

c

1

s � t
f ðsÞ ds

is increasing on ð0; cÞ; therefore

hðu � eÞ
Z

I

aðtÞ dtp
Z

I

fcðtÞ dtphðuÞ
Z

I

aðtÞ dt

and

hðuÞ
Z

J

aðtÞ dtp
Z

J

fcðtÞ dtphðu þ eÞ
Z

J

aðtÞ dt

from which

ncðI ; JÞp
R

I
aðtÞ dtR

J
aðtÞ dt

and ncðJ; IÞphðu þ eÞ
hðu � eÞ

R
J

aðtÞ dtR
I

aðtÞ dt
:

But aðtÞ has smooth integral on ½a; b�: Also

hðu þ eÞp 1 þ 2e
c � ðu þ eÞ


 �
hðu � eÞ;
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which can be gained by integrating the following inequality with respect to s from c

to 1:

1

s � ðu þ eÞ f ðsÞp 1 þ 2e
c � ðu þ eÞ


 �
1

s � ðu � eÞ f ðsÞ:

But c � ðu þ eÞXd; so hðu þ eÞ=hðu � eÞp1 þ 2e=ð
ffiffi
e

p
� 2eÞ ¼ 1 þ oð1Þ:

Thus we have proved that ncðI ; JÞ ¼ 1 þ oð1Þ and ncðJ; IÞ ¼ 1 þ oð1Þ as e-0;
where ðI,JÞC½a; d�:

Case 2: Suppose that ðI,JÞC½e; b�: Exactly as in case 1, we can see that ncðI ; JÞ ¼
1 þ oð1Þ and ncðJ; IÞ ¼ 1 þ oð1Þ as e-0; where ðI,JÞC½e; b�:

Case 3: Now suppose that ðI,JÞ-ðd; eÞa|: Let d 0 :¼ maxðc �
ffiffi
e

p
; aÞ and e0 :¼

minðc þ
ffiffi
e

p
; bÞ: Because of our assumption, I,JC½d 0; e0�:

Let first tAðd 0; cÞ be arbitrary and define the function hðtÞ as in case 1.
From Lemma 22, we have

fcðtÞ
�aðtÞ lnðc � tÞ � f ðcÞ
����

����pð1 þ 1�c
2
ÞðL þ f ðcÞÞ þ jjf jjL1½c;1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�lnðc � tÞ
p ð21Þ

where L is the Lipschitz constant of f on the interval ½c; cþ1
2
�: But cA½a; b�; so

Lp sup

x;yA a;
bþ1
2

h i
xay

f ðyÞ � f ðxÞ
y � x

����
����

is a finite global upper bound for the possible Lipschitz constants. Also,
f ðcÞpjjf jj½a;b� and jjf jjL1½c;1�pjjf jjL1½�1;1�: Therefore, the numerator of (21) is bounded

by a global constant (which depends on the function f ðsÞ only).

Since now tAðd 0; cÞ; c � tp
ffiffi
e

p
; so 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lnðc � tÞ

p
¼ 1 þ oð1Þ as e-0: From these,

we can conclude that

fcðtÞ
�aðtÞ lnðc � tÞ � f ðcÞ ¼ oð1Þ tAðd 0; cÞ as e-0: ð22Þ

We also know that aðtÞ is a continuous function, so

aðtÞ ¼ aðcÞ þ oð1Þ for tAðd 0; cÞ as e-0: ð23Þ

aðtÞ and f ðtÞ are bounded on ½a; b� and so from (22) and (23) we can see that

fcðtÞ ¼ ðaðcÞf ðcÞ þ oð1ÞÞ ln 1

c � t

for tAðd 0; cÞ as e-0:
Now if tAðc; e0Þ; the same argument shows that

ccðtÞ ¼ ðaðcÞf ðcÞ þ oð1ÞÞ ln 1

t � c

for tAðc; e0Þ as e-0: (Here we used the assumption, that bðcÞgðcÞ ¼ aðcÞf ðcÞ:)
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Putting these together, we have

rcðtÞ ¼ ðaðcÞf ðcÞ þ oð1ÞÞ ln 1

jc � tj

for tAðd 0; e0Þ as e-0:
Since the functions aðcÞ and f ðcÞ have a positive lower bound on ½a; b�; we get

ncðJ; IÞ ¼
aðcÞf ðcÞ þ oð1Þ

R
I
ln 1

jc�tj dt

aðcÞf ðcÞ þ oð1Þ
R

J
ln 1

jc�tj dt
¼ ð1 þ oð1ÞÞ

R
J

ln 1
jc�tj dtR

I
ln 1

jc�tj dt
:

By Proposition 20, logð1=jxjÞ has smooth integral on any interval ½�a; a�; 0oao1:
Thus the second factor is 1 þ oð1Þ as e-0; so

ncðJ; IÞ ¼ 1 þ oð1Þ where I ; JCðd 0; e0Þ as e-0;

and similarly

ncðI ; JÞ ¼ 1 þ oð1Þ where I ; JCðd 0; e0Þ as e-0:

Cases 1–3 together proves that the family of functions F has uniformly smooth
integral on ½a; b�: &

Lemma 24. Let H be a monotone increasing function on ð�1; 1Þ which is absolutely

continuous inside ð�1; 1Þ and for which HðsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p
AL1½�1; 1�: Define

vcðxÞ :¼ �PV

Z c

�1

1

ðs � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds cA½�1; 1�; xAð�1; 1Þ

(which is a principal value integral, if xoc). Then we can integrate by parts as follows:

PV

Z 1

�1

HðsÞ
ðs � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds ¼
Z 1

�1

vsðxÞ dHðsÞ; a:e: xA½�1; 1�: ð24Þ

Proof. In fact (24) is true whenever H 0ðxÞ exists at x: Since the derivative of H exists
almost everywhere, this will prove the lemma.

Because of (17) we can define vcðxÞ with regular integrals, too:

vcðxÞ ¼
�
R c

�1

1

ðs � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p
ds

if cox;

R 1

c

1

ðs � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p
ds

if xoc

8>>><
>>>:
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PV

Z 1

�1

HðsÞ
ðs � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

¼ lim
e-0þ

Z x�e

�1

HðsÞ
ðs � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds þ
Z 1

xþe

HðsÞ
ðs � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

" #
:

Here
R x�e
�1 ¼

R x�e
a

þ
R a

�1 and
R 1

xþe ¼
R b

xþe þ
R 1

b
where the second terms tend to 0 as

a-� 1þ; b-1�: Integrating by parts, we getZ x�e

a

HðsÞ
ðs � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds þ
Z b

xþe

HðsÞ
ðs � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

¼ �vx�eðxÞHðx � eÞ þ vaðxÞHðaÞ þ
Z x�e

a

vsðxÞ dHðsÞ

� vbðxÞHðbÞ þ vxþeðxÞHðx þ eÞ þ
Z b

xþe
vsðxÞ dHðsÞ:

We will show that lima-�1þ vaðxÞHðaÞ ¼ 0; limb-1� vbðxÞHðbÞ ¼ 0; and if H 0ðxÞ
exists at x; then lime-0þ ½vxþeðxÞHðx þ eÞ � vx�eðxÞHðx � eÞ� ¼ 0:

From these the statement of the lemma follows:
We have

vxþeðxÞHðx þ eÞ � vx�eðxÞHðx � eÞ

¼ ½vxþeðxÞ � vx�eðxÞ�Hðx þ eÞ � vx�eðxÞ½Hðx � eÞ � Hðx þ eÞ�:

Here lime-0þ ½vxþeðxÞ � vx�eðxÞ� ¼ PV
R 1

�1
1

ðs�xÞ
ffiffiffiffiffiffiffiffi
1�s2

p ds ¼ 0; Hðx þ eÞ is bounded as

e-0þ and

lim
e-0þ

Hðx � eÞ � Hðx þ eÞ
2e

-� H 0ðxÞ:

We can also see, that lime-0þevx�eðxÞ ¼ 0; since

0p vx�eðxÞ ¼
Z x�e

�1

1

ðx � sÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds

pC1

Z x�e

�1

1

x � s
dspC1ln

1

e
þ C2:

It has remained to prove that lima-�1þ vaðxÞHðaÞ ¼ 0 (the proof of

limb-1� vbðxÞHðbÞ ¼ 0 is the same). First notice that vaðxÞ behaves like C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ aÞ

p
as a-� 1þ: Therefore we are done, if we can prove the following: If h is a monotone

function for which hðsÞ=
ffiffi
s

p
AL1½0; 1�; then lim

s-0þ

ffiffi
s

p
hðsÞ ¼ 0: Indeed, if this limit is not

zero, then there exist a 0od and a decreasing sequence sn-0: d=
ffiffiffiffi
sn

p
pjhðsnÞj: We

can suppose that jhðsÞj is decreasing in ð0; rÞ for some r: (The increasing case is
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obvious.) We can also suppose that s1or: NowZ d

0

jhðsÞjffiffi
s

p dsX
XN

1

ðsn � snþ1Þ
d
sn

¼ d
XN

1

1 � snþ1

sn


 �
:

But this infinite sum is infinity, since
Q

snþ1=sn ¼ 0: This contradicts

hðsÞ=
ffiffi
s

p
AL1½0; 1�: &

At last we are in the position to finish the proof of Theorem 6. We already have
proven the first part of the theorem (see Lemma 17). It remains to show that the
density of the equilibrium measure has smooth integral inside ða; bÞ: We have seen
that it is enough to give a proof when the support is an interval, that is:

If Sw ¼ ½a; b� and Q is weak convex on ða; bÞ; then the density v has smooth integral

inside ða; bÞ:
(Although by the balayage process we achieved that S ¼ ½a; b�; in this statement S

does not have to be ½a; b�: All we need is Sw to be an interval. We also remark
that although the proof will be short, everything we proved so far is used in the
proof.)

Proof. We can suppose that a ¼ �1; b ¼ 1: Let ½a; b�Cð�1; 1Þ be an arbitrary
interval.

Let kA½�1; 1� be a number for which

Q0ðxÞp0 xAð�1; kÞ;

Q0ðxÞX0 xAðk; 1Þ:

Let us define

Fðs; tÞ :¼

1 þ t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p ð1 � sÞQ0ðsÞ if sAð�1; kÞ;

1 � t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p ð1 þ sÞQ0ðsÞ if sAðk; 1Þ:

8>><
>>:

If in (18) we choose r :¼ k; we get

vðx0Þ ¼ PV

Z 1

�1

Fðs; x0Þ
ðs � x0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ds � Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � x2

0Þ
q ; x0Að�1; 1Þ;

where EAR is some constant, so by Lemma 24:

vðx0Þ ¼
Z 1

�1

vsðx0Þ dFðs; x0Þ �
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � x2
0Þ

q ;
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where the variable of the integration is s; and

vsðx0Þ :¼ �PV

Z s

�1

1

ðt � x0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p dt:

Therefore

vðtÞ ¼ 1 þ t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p
Z k

�1

vsðtÞd½ð1 � sÞQ0ðsÞ�

þ 1 � t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p
Z 1

k
vsðtÞd½ð1 þ sÞQ0ðsÞ� � Effiffiffiffiffiffiffiffiffiffiffiffi

1 � t2
p tAð�1; 1Þ: ð25Þ

Setting f ðsÞ :¼ gðsÞ :¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p
and aðtÞ :¼ bðtÞ :¼ 1þt

p2
ffiffiffiffiffiffiffi
1�t2

p in Lemma 23, we gain

that the family of functions

t/
1 þ t

p2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p vcðtÞ: cA½�1; 1�
� �

has uniformly smooth integral on ½a; b�: So by Proposition 18, the first term of (25)
has smooth integral on ½a; b�: Similarly the second term of (25) has also smooth
integral on ½a; b�:

Since vðtÞ has a positive lower bound on ½a; b�; no matter what the sign of E is, vðtÞ
has a smooth integral on ½a; b� by Propositions 18 and 19. This completes the proof
of Theorem 6. &
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